Сверхновые: Общие Сведения

"Nova star" in the Andromeda Nebula

31 августа 1885 г. на обсерватории в г. Тарту астроном Э. Гартвиг обнаружил новую звезду около ядра туманности Андромеды M31.

Ernst Hartwig (1851–1923)

Edwin Hubble (1889–1953)

- Extragalactic nature of "nebular objects" (1920–1933).
- The expanding universe "Hubble's law" (1929).

Robert Gendler (2002)

W. Baade and F. Zwicky

Walter Baade (1893–1960)

Fritz Zwicky (1898–1974)

Zwicky (1940):

Baade and I first introduced the term "supernovae" in seminars and in a lecture course on astrophysics at the California Institute of Technology in 1931.

Обозначение: SN 1054, SN 1987A, SN 2000аа Признак: $L \ge 10^{41}$ эрг/сек

Baade & Zwicky (1934):

In addition, the new problem of developing a more detailed picture of the happenings in a super-nova now confronts us. With all reserve we advance the view that a super-nova represents the transition of an ordinary star into a *neutron star*, consisting mainly of neutrons. Such a star may

Supernova 1993J in the Galaxy M81

Maund et al. (2004)

Supernova 1994D in the Galaxy NGC 4526

High-Z Supernova Search Team, HST, NASA (1998)

Supernova 2005cs in the Galaxy M51

GaBany (2005)

The Hubble Space Telescope (1990, 2.4 meter)

STS-103, STScI, ESA, NASA (2001)

The Hubble Deep Field

Williams, The HDF Team, NASA (2002)

The Year of Distant Supernovae

High-Z Supernova Search Team, HST, NASA (1998)

Presence of SN 1885 Remnant in galaxy M31

Fesen et al. (2007)

SN 1006: Supernova Remnant in X-Rays

NASA/CXC, Winkler (2013)

SN 1054 - Crab Nebula (M1)

NASA, ESA, Hester, Loll (2005)

X-Rays From Tycho's Supernova Remnant

NASA/CXC, Lu (2011)

Kepler's Supernova Remnant SN 1604

Chandra X-ray Observatory Hubble Space Telescope Spitzer Space Telescope

SST MIPS 24μm HST 658nm Hα CXO 0.3-1.4keV CXO 4-6keV

3.8 light-years 1.2 parsecs 60" NA

Cassiopeia A Supernova Remnant in X-Rays

Hughes et al., NASA/CXC/SAO (2002)

SN discovery record

http://web.oapd.inaf.it/supern/snean.txt

Capellaro (2007)

Turatto (2003)

Supernova Relative Fractions

Li et al. (2011), Smith et al. (2011)

SN and galaxy types

Capellaro (2007)

Light Curves of Type Ia Supernovae

Light Curves of Type II Supernovae

Light Curves of Type Ibc Supernovae

Spectra of Basic Supernova Types

Turatto (2003)

In the Heart of the Crab

Blair et al. Hubble Heritage Team, NASA (2000)

Cooling Neutron Star in Cassiopeia A

NASA/CXC/UNAM/Ioffe/Page, Shternin et al; NASA/STScI; NASA/CXC/Weiss (2011)

IC 443: Supernova Remnant and Neutron Star

NASA/CXC/Gaensler et al., NASA/ROSAT/Asaoka & Aschenbach, NRC/DRAO/Leahy, NRAO/VLA (2006)

X-ray Emission from SNR Puppis A

Snowden, Petre, Becker et al., ROSAT Project, NASA (1998)

Central Compact Objects in SN Remnants

Echos of Supernova 1987A

Malin (1997)

Cassiopeia A Light Echoes in Infrared

Krause et al., SSC, JPL, Caltech, NASA (2005)

The Cassiopeia A Supernova Was of Type IIb

SN 1998bw and GRB 980425: Supernova – Gamma Ray Burst Connection

Holland, Hjorth, Fynbo, ESA, NASA (2002)

SN 2006GY: Brightest Supernova

Smith, Li, Bloom, Hansen et al. (2007)

Diversity of Supernova Light Curves

Физическая Картина Взрывов Сверхновых

Тип	M	$oldsymbol{E}$	$M_{ m Ni}$	Stellar	Explosion
	(M_{\odot})	$(10^{51} \mathrm{~erg})$	(M_{\odot})	remnant	$\operatorname{mechanism}$
Ia	~ 1	~ 1	~ 0.1 -1.1	none	thermonuclear
Ibc	$\sim \! 20 {+} 25$	~ 1	~ 0.2	NS/BH	grav. collapse
Ic-pec	~ 30	$\sim 20 – 50$	~ 0.5 – 07	NS/BH	grav. collapse
hypernovae					
IIL, IIP	\sim 9–30	$\sim 0.2 - 4$	$\sim 0.01 - 0.1$	NS/BH	grav. collapse
${ m IIb},{ m IIn}$					
very bright	\sim 30–100	~ 10	?	NS/BH	grav. collapse
IIn				none	pair instability

• Basic values for core-collapse supernovae:

The gravitational binding energy of a neutron star is about 10^{53} erg. The kinetic energy of a supernova is about 10^{51} erg. The radiated energy of a supernova is about 10^{49} erg.

• The radioactive decay ${}^{56}\text{Ni} \rightarrow {}^{56}\text{Co} \rightarrow {}^{56}\text{Fe}$.

Theory and observation in the H-R diagram

Composition of the Universe

Woosley (2008)