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We analyse the quasi-spherical accretion in the presence of axisymmetric curl. The condition
allowing the curl to reach the central object is formulated. Possible implications of the solution to
the theory of turbulent accretion are discussed.
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INTRODUCTION

An activity of many astrophysical sources (Active
Galactic Nuclei, Young Stellar Objects, Galactic X-ray
sources, microquasars) is associated with the accretion.
For this reason, the accretion onto compact objects (neu-
tron stars or black holes) is the classical problem of
modern astrophysics (see, e.g., Lipunov [24], Shapiro &
Teukolsky [33] and references therein). At present the an-
alytical approach, whose foundation was laid back in the
mid-twentieth century [12, 13], began to be supplanted
by numerical simulations [18, 27, 29, 36, 37]. Analytical
solutions were found only in exceptional cases [1, 7, 8,
11, 25, 26].

It should be emphasized that last time the focus of
the research has been shifted to numerical magnetohy-
drodynamic simulations, within which framework it has
become possible to take into account the turbulent pro-
cesses associated with magnetic reconnection, magne-
torotational instability, etc. [3, 14, 21]. However, in our
opinion, some important features of the turbulent accre-
tion can still be understood on the ground of simple an-
alytical model.

In our paper we discuss a problem of dynamics of
a solitary vortex against the background of spherical
Bondi flow. We consider the case of the vorticity sim-
ilar to §5.1 from Kovalenko & Eremin [20] correspond-
ing to the second order of expansion in terms of our
small parameter. As to linear perturbations, their role
was clarified by Foglizzo [15, 16]. Due to the isentrop-
icity of the flow and the specific case of the turbulence
(v · (∇ × (∇ × v)) = 0 in the linear approximation) de-
scribed below linear perturbations are absent.

In the first part, we formulate the basic equations of
ideal steady-state axisymmetric hydrodynamics, which
are known to be reduced to one second-order equation
for the stream function. Then, in the second part, the
structure of the solitary curl is discussed in detail. Fi-
nally, in the third part we consider two toy models de-
scribing axisymmetric turbulence. It is shown that the
turbulence changes mainly the effective gravity potential
but not the effective pressure.

BASIC EQUATIONS

First of all, let us formulate basic hydrodynamical
equations describing axisymmetric stationary flows us-
ing spherical coordinate system. Then, as is well-
known (see classical textbooks [38, 39]), it is
convenient to introduce the potential Φ(r, θ) connected
with the poloidal velocity vp and the number density n
as [5, 6, 17] (here and below we assume that all
base vectors (e⃗r, e⃗θ, e⃗ϕ) are normalized to unity)

nvp =
∇Φ× eφ
2πr sin θ

. (1)

This definition results in the following properties

• The continuity equation ∇ · (nv) = 0 is satisfied
automatically.

• Multiplying both sides of Eqn. (1) by the
area element dS = err

2 sin θdθdφ and inte-
grating over the spherical element of radiusr,
strained on a cirlce that intersects the point
(r, θ), it is easy to verify that the potential
Φ(r, θ) has the meaning of the particle flux
through the circle r, θ, 0 < φ < 2π. In particular,
the total flux through the surface of the sphere of
radius r is Φtot = Φ(r, π).

• As v · ∇Φ = 0, the velocity vectors v are located
on the surfaces Φ(r, θ) = const.

In this case, three conserved quantities for energy En,
angular momentum Ln, and the entropy s can be formu-
lated as

En = En(Φ) =
v2

2
+ w + φg, (2)

Ln = Ln(Φ) = vφr sin θ, (3)

s = s(Φ). (4)

Here w is the specific enthalpy, and φg is the gravitational
potential.

In what follows we for simplicity consider the entropy
s(Φ) to be constant. Then the equation for the stream
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function Φ(r, θ) (which is no more than the projection
of the Euler equation onto the axis perpendicular to the
velocity vector v) looks like (cf. Beskin [5, 6], Heyvaerts
[17] and classical textbooks [38, 39])

ϖ2∇k

(
1

ϖ2n
∇kΦ

)
+ 4π2nLn

dLn

dΦ
− 4π2ϖ2n

dEn

dΦ
= 0,(5)

where ϖ = r sin θ. This equation represents the balance
of forces in a normal direction to flow lines. In partucular,
for spherically symmetric flow, i.e., for En(Φ) = const,
Ln(Φ) = 0, it has the solution

Φ = Φ0(1− cos θ), (6)

where Φ0 is the positive-valued constant.
In the following, we deal with the linear angular oper-

ator

L̂θ = sin θ
∂

∂θ

(
1

sin θ

∂

∂θ

)
, (7)

originated from Eqn. (5). It has eigenfunctions

Q0 = 1− cos θ, (8)

Q1 = sin2 θ, (9)

Q2 = sin2 θ cos θ, (10)

. . .

Qm =
2mm!(m− 1)!

(2m)!
sin2 θ P ′

m(cos θ), (11)

and the eigenvalues

qm = −m(m+ 1). (12)

Here Pm(x) are the Legendre polynomials and the dash
indicates their derivatives.
Here and futher we use the standart approach

when the small linear disturbances are analyzed
on the background of analytical solution, in our
case - on the background of solution from Eqn.
(6). Let us consider now the small disturbance of the
spherically symmetric flow, so that one can write down
the flux function as

Φ = Φ0[1− cos θ + ε2f(r, θ)] (13)

with the small parameter ε ≪ 1. Then Eqn. (5) can be
linearised, while the equation for the perturbation func-
tion f(r, θ) is written as [5]:

−ε2D
∂2f

∂r2
− ε2

r2
(D + 1) sin θ

∂

∂θ
(

1

sin θ

∂f

∂θ
) + ε2Nr

∂f

∂r
=

= −4π2n2r2

Φ2
0

sin θ(D + 1)
dEn

dθ

+
4π2n2

Φ2
0

(D + 1)
Ln

sin θ

dLn

dθ
− 4π2n2

Φ2
0

cos θ

sin2 θ
L2
n.

(14)
Here D = −1 + c2s/v

2, and Nr = 2/r − 4π2n2r2GM/Φ2
0.

This equation allows us to seek the solution in the form

f(r, θ) =
∞∑

m=0

gm(r)Qm(θ). (15)

Introducing now dimensionless variables

x =
r

r∗
, u =

n

n∗
, l =

c2s
c2∗

, (16)

where the ∗-values correspond to the sonic surface (which
can be taken from the zero approximation), we can write
the ordinary differential equations describing the radial
functions gm(r):

(1− x4lu2)g′′m + 2

(
1

x
− x2u2

)
g′m +m(m+ 1)x2lu2gm =

= km
R2

r2∗
x4lu4 − λm

R2

r2∗
u2 − σmx6lu4, .

(17)
Here g′m = dgm(x)/dx, g′′m = d2gm(x)/dx2, and the ex-
pansion coefficients σm, λm and km depend on the dis-
turbances as:

sin θ
dEn

dθ
= ε2c2∗

∞∑
m=0

σmQm(θ), (18)

cos θ

sin2 θ
L2
n = ε2c2∗r

2
∗

∞∑
m=0

λmQm(θ), (19)

Ln

sin θ

dLn

dθ
= ε2c2∗r

2
∗

∞∑
m=0

kmQm(θ). (20)

Finally, the functions l(x) and u(x) correspond to the
spherically symmetric flow. For the polytropic equation
of state P (n, s) = A(s)nΓ−1 we use here they are con-
nected by the relation l = uΓ−1. As to the dimensionless
number density u(x), it can be found from ordinary dif-
ferential equation

du

dx
= −2

u

x

(1− x3u2)

(1− x4lu2)
(21)

with the boundary conditions

u(x)|x=1 = 1, (22)

du

dx

∣∣∣∣
x=1

= −4 +
√
10− 6Γ

Γ + 1
. (23)

Second boundary condition from Eqn.(23)
could be easily derived by L’Hopital expansion
of (21). The chose of sign corresponds to accre-
tion, opposite to the case of [9], where the process
of ejection has been considered.
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FIG. 1: Dimensionless number density u(x) = n/n∗ in region
1 ≤ x ≤ R/r∗ = 10, Γ from 1.1 to 5/3

As for the boundary conditions for the system of Eqns.
(17), they are taken analogous to the case of Bondi-Hoyle
accretion [5, 9]:

ε2gm(1) =
(2m)!

2m(m+ 1)m!

[
(δEn)m

c2∗
− (L2

n/ sin
2 θ)m

2c2∗r
2
∗

]
,

(24)

g′m(R/r∗) = 0, (25)

where (...)m stands for the expansion in terms of the
Legendre polynomials, which can be found from energy
and angular momentum integral perturbations.

SOLITARY CURL

Now let us consider in detail the internal structure
of the quasi-spherical accretion with a small axisymet-
ric perturbation localised near the axis θ = π. In other
words, we suppose that the angular size of the vortex is
small enough (δθcurl ≪ 1). The main goal of this numer-
ical calculation is to find the disturbance function f(r, θ)
which gives us the possibility to determine velocity com-
ponents vθ and vφ, i.e., the main characteristics of the
perturbed flow.
To model the internal structure of the vortex, we de-

termine θ-dependent angular velocity Ω(θ) in the form

Ω(θ) = Ω0 exp[−α2(1 + cos θ)]. (26)

Here Ω0 gives the amplitude of considered curl and the
coefficient α ≃ 10 (which are free parameters of our
model) is an inversed curl width. Certainly, we assume
that the perturbation is small in comparison with the
main contribution of the radial accretion.
Then the flow structure can be described by the system

(17), (21)–(25) formulated in previous section. As to
the expansion coefficients km, λm and σm, they are to
be determined from Eqns. (18)–(20) and (24) on the
outer boundary of a flow r = R. For our choice (26) the
disturbances have the form

δEn(θ) =
Ω2

0 exp[−2α2(1 + cos θ)]R2 sin2 θ

2
, (27)

δLn(θ) = Ω0 exp[−α2(1 + cos θ)]R2 sin2 θ. (28)

As one can easily check, it gives ε = Ω0R/c∗.
Expansions (18), (19), and (20) in terms of Qm(θ) con-

tain some numerical difficulties because the set of this
functions is not an orthogonal one, and, even though it
converges, in our case of very small curl width we can ne-
glect just summands with numbers larger than 50. Even
in some trivial cases like Ω(θ) ∼ (1 − θ2) these poly-
nomials call a number of numerical obstacles (e.g., bad-
conditioned matrix of linear equation for coefficients km,
λm and σm, etc).

In order to expand functions of integrals, we used the
auxiliary set of Chebyshev polynomials, which is orthogo-
nal and posesses a feature of generally faster convergence.
Using these polynomials, we could find all expansions
with the accuracy no worse than 10−3. As was shown
in Sect. 2, the normalized density function u(x) can be
derived from the equation (21) and boundary conditions
(22) and (23). The results of numerical calculations for
different polytropic indeces Γ is shown on Figure 1. In
particiular, as one can see, the density is nearly constant
in subsonic regime (r ≫ r∗).

An example of the numerical calculation of perturba-
tion function f(r, θ) is shown on Figure 2. We should
stress that f(r, θ) turns actually zero outside the small
region near the axial curl. This statement allows us to
assume as a zero approximation that the turbulent ac-
cretion regime containing a number of curls can be con-
sidered as a set of noninteracting ones.

Apart from numerical solution, we can also find the
analytical asymptotic solutions in the supersonic region
x ≪ 1 where Eqn. (17) can be rewritten as

g′′m+
3

2x
g′m+

m(m+ 1)

2Γ+1
x−(3Γ+1)/2gm+λm

R2

r2∗

1

4x3
= O(x−3).

(29)
Here we take into account that Γ < 5/3. Getting rid
of all parameters from the right part of this equation,
one can introduce a new function ym = gm/(λmR2/r2∗).
Then Eqn. (29) can be rewritten as

y′′m +
3

2x
y′m +

m(m+ 1)

2Γ+1
x−(3Γ+1)/2ym +

1

4x3
= O(x−3).

(30)
Neglecting now all terms which are proportional to x−ν ,
where ν > −3, we obtain that this equation has an uni-
versal solution independent of the boundary conditions
on the outer boundary r = R

y(x) = − 8

x
. (31)

Remember that the same asymptotic behavior was ob-
tained by [7] for homogeneously rotating flow.

As was already stressed, numerical results allow us to
determine vθ/vφ ratio around the curl. It is easy to show
that

vθ
vφ

= 2
√
2 επ

(r∗
R

)7/2

p(r, θ), (32)
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FIG. 2: Normalized vθ in region 1 ≤ x ≤ R/r∗ = 10, 0 ≤ θ ≤
π, Γ = 4/3

where

p(r, θ) =

∞∑
m=0

g′m(r)Qm(θ)

u(r) sin2 θ exp[−α2(1 + cos θ)]
. (33)

In our calculation we put r∗/R = 0.1, so that the function
(33) is limited in area near the curl (|p(r, θ)| < 200).
Taking now into account that ε is a small parameter of
our expansion and |f(r, θ)| < 20, one can show that for
reasonable parameter ε the ratio |vθ/vφ| in the area of
vortex has an order of ∼ 10−5 (see Figure 3). Thus, we
could claim that vθ ≪ vφ, and then one can neglect the
all terms in Navier-Stokes equations that consist vθ.
In the same time, one can determine vφ/vr ratio, which

will be useful in futher consideration. Taking into ac-
count (28) and deriving vr for transonic flow from the
zero order approximation, we get

vφ
vr

=
n

n∗

r

r∗

R

r∗
ε sin θ exp[−α2(1 + cos θ)]. (34)

In the subsonic region r∗ ≤ r the absolute value of
this ratio has an order of 10−4. On the other hand,
in the supersonic region near the star (r ≈ rstar ≪ r∗,
where rstar is a star radius) the value of (34) is approx-
imately (rstar/r∗)

−1/2(R/r∗)ε sin θ exp(−α2(1 + cos θ)),
which sufficiently depends on accretor radius rstar.
Thus, according to (31), we cannot use our solution in

the limit r → 0. Indeed, analysing the field line equation
rdθ/dr = vθ/vr, we obtain that the asymptotic solution
survives until θ0 ≈ δθ, where θ0 ≪ 1 is an initial angular
size of a curl and δθ is a broadening parameter of the
stream line. Deriving θ-component of the velocity from
(1) and taking vr of zero order, we get

dθ

dr
∼ ε2

∂f/∂r

sin θ
. (35)

Assuming now that θ ≪ 1, one can expand equation (35)
in θ and neglecting all summands of m with m ≥ 2, we
find

dθ

dr
∼ ε2θ

∂

∂r

R2

rr∗
. (36)

This equation can be simply integrated, and we obtain

ln
θ0 + δθ

θ0
∼ ε2

R2

r∗r
. (37)

FIG. 3: vθ/vφ ratio in region 1 ≤ x ≤ 10, 19π/20 ≤ θ ≤ π.

Hence, under the radius r ∼ ε2R2/r∗ we cannot use
the solution (31) as the disturbance becomes larger than
unity. In order to keep the solution up to star surface
r = rstar, we should demand

ε2R2/r∗ < rstar. (38)

It gives us the general condition of appliability of the
approach described above. Unless we cannot use the
method of linear expansion of the Grad-Shafranov equa-
tion, and the turbulent flow is to be described in another
way which lies outside the consideration of current pa-
per [20].

TWO TOY MODELS

Let us suppose now that the turbulence in the accreting
matter can be described by the large number of axisym-
metric vortexes with different parameters Ω0 and α filling
all the accreting volume. Within this approach one can
construct two toy analytical models demonstrating how
the turbulence can affect the structure of the spherically
symmetric accretion.

Inviscous flow

The first model in which we neglect viscosity corre-
sponds to classical ideal spherically symmetric Bondi ac-
cretion [12]. In this case one can consider the following
system of equations:

∇(nv) = 0, (39)

(v · ∇)v = −∇P

ρ
−∇φg, (40)

(v · ∇)s = 0. (41)

Following Bondi [12] we consider polytropic equation of
state P = P (n, s) = k(s)nΓ resulting in for polytropic
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index Γ ̸= 1

c2s =
Γk

mp
nΓ−1, (42)

w =
c2s

Γ− 1
, (43)

T =
mp

Γ
c2s . (44)

Here again n (1/cm3) is the number density, mp (in
g) is the mass of particles (ϱ = mpn is the mass den-
sity), s is the entropy per one particle (dimensionless),
w (in cm2/s2) is the specific enthalpy, T (in erg) is the
temperature in energy units, and, finally, cs (cm/s) is the
sound velocity.
As was demonstrated above, for a weak enough tur-

bulence level (38) for any inividual curl one can neglect
θ-component of the velocity perturbation in comparison
with the toroidal one vφ up to the central body r = rstar.
Thus, in zero approximation one can put vθ = 0, i.e.,
θ = const. This implies that, according to the angular
momentum concervation law r sin θ vφ = const, we can
write down

vφ(r, θ) = Ω(θ)
R2

r
sin θ. (45)

Here Ω(θ) is a smooth function of θ that can be approx-
imately described as:

Ω(θ) ≈

{
Ω0, π − α−1 < θ < π,

0 0 < θ < π − α−1.
(46)

In order to find the characteristic values of the accre-
tion flow we have to use energy and momentum intergals
conserving on stream lines. Taking into account an as-
sertion vr ≫ vφ ≫ vθ, we can neglect θ-component of
velocity which gives

En(θ) =
v2r(r)

2
+ ω(r) + φg(r) +

L2(θ)

2r2 sin2 θ
, (47)

Ln(θ) = vφr sin θ = Ω(θ)r2 sin2 θ. (48)

Averaging now these integrals in θ and introducing a new
value

L2
av ≡ ⟨L

2(θ)

sin2 θ
⟩ (49)

we obtain for the averaged energy integral

Eav ≡ ⟨En(θ)⟩ =
v2r(r)

2
+ ω(r) + φg(r) +

L2
av

2r2︸ ︷︷ ︸
φeff (r)

. (50)

As we see, two last terms can be considered as effective
gravitational potential, as have been also proposed in a
number of papers [30, 35].
Futher calculations are quite similar to the classical

Bondi problem for the spherical flow. In other words,

using another integrals of motion, i.e., the total particle
flux

Φ = 4πr2n(r)vr(r) = const, (51)

and the entropy s, one can rewrite the energy integral
(50) as

Eav =
Φ2

32π2n2r4
+

Γk(s)

Γ− 1

nΓ−1

mp
− GM

r
+

L2
av

2r2
. (52)

It gives the following expression for the logarithmic r-
derivative of the number density

η1 =
r

n

dn

dr
=

2− GM

v2rr
+

L2
av

v2rr
2

−1 +
c2s
v2r

. (53)

As for Bondi accretion, this derivative has a singularity
on the sonic surface vr = cs = c∗. This implies that for
smooth transition through the sonic surface r = r∗, the
additional condition is to be satisfied:

2− GM

c2∗r∗
+

L2
av

c2∗r
2
∗
= 0. (54)

Solving now (54) in terms of r∗ in this approximation,
we find

r∗ =
GM

2c2∗

(
1− 4L2

avc
2
∗

G2M2

)
, (55)

c∗ =

√
2

5− 3Γ
c∞

(
1 +

12(Γ− 1)

(5− 3Γ)2
L2
avc

2
∞

G2M2

)
, (56)

where c∞ is evaluated from

Eav =
c2∞

Γ− 1
. (57)

Accordingly, we obtain for r∗/r∗B and c∗/c∗B ratios:

r∗
r∗B

= 1− 16

(5− 3Γ)2
L2
avc

2
∞

G2M2
, (58)

c∗
c∗B

= 1 +
12(Γ− 1)

(5− 3Γ)2
L2
avc

2
∞

G2M2
, (59)

where c∗B and r∗B correspond to the classical Bondi ac-
cretion.

The presence of vorticity not only changes sonic surface
parameters, but also effectively diminishes accretion rate:

Ṁ

ṀB

=
r2∗c∗

r2∗Bc∗B
= 1− 4(11− 4Γ)

(5− 3Γ)2
L2
avc

2
∞

G2M2
(60)

in our order of precision. The similar expression for
Bondi-Hoyle accretion can be found in Krumholz et al.
[22].

Finally, using the definition (49) for L2
av, we can rewrite

our criteria of the appliability (38) as L2
av ≪ GMrstar.

As rstar < r∗, it can be finally rewritten as

Lav ≪ GM

c∗
. (61)
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FIG. 4: Ratio Ω/Ω0 = F (θ) for 0 ≤ θ ≤ π/30

To sum up, one can conclude that the nonzero angular
momentum effectively decreases the gravitational force.
In other words, the presence of the angular momentum
do not allow matter to fall down as easy as in its ab-
sence. Roughly speaking, we substitute our gravitating
center with one that posesses less mass. So, in the case of
Bondi accretion with a small angular momentum pertur-
bation we should modify the relations for sonic surface
radius and velocity — they decrease and rise respectively.
It is important to note that we can consider turbulent ac-
cretion regime as one with a modified gravity potential.

Viscous flow

It this subsection we consider stationary axisymmetric
quasi-spherical flow of viscous fluid. Using the condition
|vr| ≫ |vφ| ≫ |vθ|, and neglecting all the terms contain-
ing vθ, we obtain for φ-component of Euler equation [23]

vr
∂vφ
∂r

+
vrvφ
r

= ν

(
∇2vφ − vφ

r2 sin2 θ

)
. (62)

For viscous flow it is convenient to determine the toroidal
component of the velocity vφ as

vφ = Ω(r, θ)r sin θ, (63)

where we will use the following form for the angular ve-
locity Ω(r, θ):

Ω(r, θ) = Ω0(r) exp

[
− θ2

2δ(r)

]
. (64)

Here Ω0 = Ω0(r) is an amplitude, and δ = δ(r) is a
square of effective angular width of an individual curl.
Substituting now vφ into Eqn. (62), we obtain

Ṁ
d

dr
(Ωr2 sin θ) =

4πr2η

sin2 θ

d

dθ

[
sin3 θ

dΩ

dθ

]
, (65)

where

Ṁ = 4πr2ρvr (66)

is the accretion rate remaining constant in stationary
flow, and η = ρν is a dynamic viscous coefficient which
can be considered as a constant as well [23].

Using now Eqn. (65), one can easily show that the to-
tal angular momentum of an individual vortex conserves
(dL/dr = 0). Indeed, internal friction connecting with
viscosity cannot change the total angular momentum of
the accreting matter. For this reason, together with (66),
the angular momentum

dL = ρΩr2 sin2 θdφ sin θdθr2dr (67)

can be rewritten as a full θ-derivative. This implies that
the r.h.s. of Eqn. (67) intergated over θ becomes zero.

Further, to determine the radial dependence of the curl
amplitude Ω0(r) and the squared width δ(r), we sub-
stitute the angular velocity Ω0(r, θ) (64) into (62) and
expand it in terms of θ near the axis, neglecting all the
terms with the power more than 3. As a result, we obtain
two equations for Ω0(r) and δ(r)

Ṁ

2πη
rΩ0(r) +

4r2Ω0(r)

δ(r)
+

Ṁ

4πη
r2Ω′

0(r) = 0, (68)

−18r2Ω0(r)−
3Ṁ

2πη
rδ(r)Ω0(r)− 10r2δ(r)Ω0(r)−

Ṁ

2πη
rδ2(r)Ω0(r) +

3Ṁ

4πη
r2δ′(r)Ω0(r)−

Ṁ

4πη
r2δ2(r)Ω′

0(r) = 0,

(69)

which have simple solutions

δ(r) = δ0 +
8πη(r − r0)

Ṁ
, (70)

Ω0(r) = Ω0
r20
r2

[
8πη(r − r0)

Ṁδ0
+ 1

]−2

. (71)

Introduction of a small vortex tubulence can be again
treated by modifying a gravitational potential as

φeff = −GM

r
+

Ω2
0r

4
0δ0

4πr2

[
1 +

8πη

Ṁδ0
(r − r0)

]−3

. (72)

Thus, viscosity results in increasing of the vortex width
(δ′ < 0 for Ṁ < 0 corresponding to accretion) and dimin-
ishing of the angular rotation. On the other hand, the
role of viscosity will be small if

8πηr0

|Ṁ |δ0
≪ 1. (73)

For η → 0 we return to the previous result δ(r) = const,
Ω0(r) ∝ r−2. Introducing now Reynolds number as

Re =
ρvl

η
, (74)

where ρ, v and l = r0δ
1/2 are characteristic values of a

flow and using expression (66), we can rewrite (73) as

Re =
|Ṁ |
4πr0η

≫ δ
−1/2
0 . (75)
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This implies that the role of viscosity is small for turbu-
lent flow.
Certainly, the analysis presented above allows us to

take into consideration only isolated set of curls. In real-
ity, dense celluar turbulent structure posesses a number
of collective effects [28], that is to be described in another
way. The easiest method to proceed with the minimal
number of additional assumptions is to choose another
angular velocity profile.
As the total angular momentum of the accreting mat-

ter is suppose to be zero, we will use the following ex-
pression for the angular velocity

Ω(r, θ) = Ω0(r) exp

(
−θ2

2δ

)(
1− γ2

2δ
θ2
)
. (76)

Here the parameter γ is to be chosen from the condition
of the zero total angular momentum∫

|r⃗|≤R

dL = 0, (77)

which is equivalent to∫ π

0

dθ sin3 θΩ(r, θ) = 0. (78)

One of its realisations can be seen on Figure 4 where the
dashed line shows zero angular velocity level. Configura-
tion like this one represents the unit of celluar turbulent
structure, fulfilling main requirements of its nature. To
simplify our calculations, we hold γ and δ on constant
values in order to get simple equation on Ω0(r). Again,
we expand equation (65) in terms of θ to the first order.
As a result, we obtain for Ω0(r):

Ω0(r) = Ω0

(r0
r

)2

exp

[
16πη

Ṁ

(1 + γ2)

δ
(r0 − r)

]
. (79)

In this case, the effective gravitational potential cannot
be derived for arbitary parameters without special func-
tions. It can be written as

φeff = −GM

r
+ C · Ω

2
0r

4
0

r2
exp

[
−16πη

|Ṁ |
(1 + γ2)

δ
(r0 − r)

]
,

(80)
where

C =
1

2π

∫ π

0

dθ exp(−θ2/δ)(1− γ2θ2

2δ
)2 sin2 θ. (81)

Choosing, for instanse, γ = 1/
√
2 and δ = 10−4, it gives

C ≈ 3.4 · 10−8.
The expression under the exponential function in (79)

is always lower than zero, so the criterion of the impor-
tance of viscosity effects can be formulated as

16πη

|Ṁ |
(1 + γ2)

δ
r0 ≫ 1, (82)

which is more convinient to discuss in terms of Reynolds
number

δ−1/2 ≫ Re. (83)

Thus, for narrow vortex (i.e., for δ < 10−2) the viscosity
effects must be taken into account.

DISCUSSION & CONCLUSION

We have consider the dynamics of a solitary axisym-
metric vortex against the background of Bondi accretion
flow. It was shown that if condition (38) does not satis-
fied, the level of turbulence is high enough and the flow
cannot be considered as radial. It is necessary to stress
that we consider the special case of the turbulence which
is non-trivial from the second order of the expansion only.

Scott & Lovelace [30] have already proposed an idea
of the inclusion of vortex terms into the effective gravi-
ational potential. In this paper the same approach is
discussed along with the impact of the vorticity on the
quasispherically-symmetric accretion.

Further, we described two analytical toy models that
show how the turbulence affects the structure of the
spherically symmetric flow. In particular, it was shown
that the sonic surface moves inwards because of effective
diminishing of gravitational force. Finally, a criterion to
analyze the importance of viscosity effects in the adia-
batic flow filled either by isolated or dense set of curls
was formulated.
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