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ABSTRACT
Deceleration of relativistic jets from active galactic nuclei (AGNs) detected recently by the
Monitoring Of Jets in Active galactic nuclei with Very Long Baseline Array Experiments
(MOJAVE) team is discussed in connection with the interaction of the jet material with an
external photon field. The appropriate energy density of the isotropic photon field necessary
to decelerate jets is determined. It is shown that disturbances of the electric potential and
magnetic surfaces play an important role in the general dynamics of particle deceleration.
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1 IN T RO D U C T I O N

Recent progress in Very Long Baseline Interferometry (VLBI) ob-
servations of relativistic jets outflowing from active galactic nuclei
(Lobanov 1998; Cohen et al. 2007; Clausen-Brown et al. 2013;
Kardashev et al. 2014) gives us new information concerning their
physical characteristics and dynamics. In particular, a rather effec-
tive deceleration of the jet material on scales greater than 50–100 pc
was recently detected by the Monitoring Of Jets in Active galac-
tic nuclei with Very Long Baseline Array Experiments (MOJAVE)
team (Homan et al. 2015). We will consider one possible expla-
nation for such deceleration, connected to the interaction of the
jet with the external photon field. Both radiation drag and particle
loading will be considered in detail in terms of the standard magne-
tohydrodynamics (MHD) approach, the first mechanism below and
the second one in the accompanying article (Beskin & Nokhrina in
preparation).

Note that the frame for our work is the MHD model, now de-
veloped intensively in connection with the theory of relativistic jets
outflowing from rotating supermassive (M ∼ 108–109 M�) black
holes, which are thought of as the ‘central engine’ in active galactic
nuclei and quasars (Begelman, Blandford & Rees 1984; Thorne,
Price & Macdonald 1986). In particular, the MHD model is the
most popular theory of jet origin and stability. Moreover, for the
last few years, additional observational confirmation in favour of
the MHD model, such as the presence of e+e− plasma (Reynolds
et al. 1996; Hirotani & Okamoto 1998) and also a toroidal magnetic
field (Gabuzda, Murrey & Cronin 2005), has been found. Finally,
recent numerical simulations (Komissarov et al. 2007; Porth et al.
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2011; McKinney, Tchekhovskoy & Blanford 2012) demonstrate
very nice agreement with MHD analytical asymptotic solutions.

On the other hand, the density of photons in the vicinity of the
central engine is high enough that it may lead to a situation in which
the photon field dramatically changes the characteristics of the ideal
MHD outflow. These changes may result in particle loading, i.e.
extensive e+e− pair creation (Svensson 1984), acceleration through
the action of the radiation drag force for small enough particle
energy and also deceleration of highly energetic particles (Sikora
et al. 1996). In other words, for a self-consistent consideration to be
achieved, the interaction of a magnetically dominated flow with an
external photon field should be taken into account.

Unfortunately, for many years the study of these two processes,
i.e. MHD acceleration and the action of external photons, has de-
veloped separately. Only in the article by Li, Begelman & Chiueh
(1992) was the first analytical step taken to combine them. In par-
ticular, the authors demonstrated how general equations can be
integrated for conical geometry (which is impossible in the general
case). On the other hand, these results were obtained in the given
(exactly monopolar) poloidal magnetic field. However, under this
assumption the fast magnetosonic surface (for cold flow) is located
at infinity (Michel 1969; Kennel, Fujimura & Okamoto 1976; Lery
et al. 1998). As a result, it is impossible to analyse the radiation
drag effect in the vicinity of the fast magnetosonic surface and the
properties of the supersonic flow outside this surface.

A self-consistent disturbance of magnetic surfaces was analysed
by Beskin, Zakamska & Sol (2004) for high enough particle energy
(the situation in which the radiation pressure is ineffective in particle
acceleration). It was demonstrated that, in the case of magnetically
dominated flow, the drag force does not actually change the particle
energy and only diminishes the total energy flux. It was shown that
the disturbance of magnetic surfaces becomes large only if the drag
force changes the total energy flux significantly. Finally, Russo &
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Thompson (2013a,b) have recently considered the drag action on
a magnetized outflow in gamma-bursters, where radiation pressure
can play the leading role in particle acceleration.

Regarding particle loading, several aspects of this process were
considered by Svensson (1984), Lyutikov (2003), Derishev et al.
(2003) and Stern & Poutanen (2006). Even if electron–positron
pairs are created at rest (and hence do not change the total energy
and angular momentum flux), increasing the particle flux inevitably
decreases the mean particle energy. As a result, the particle loading
can be considered as a rather effective mechanism for deceleration
of the jet bulk motion as well.

The main goal of this article is to determine more carefully the
photon drag action on a cylindrical magnetically dominated outflow.
As a zero approximation (i.e. without radiation drag and particle
loading), we use the well-known analytical solution for a cylindrical
magnetically dominated MHD outflow (Istomin & Pariev 1994;
Beskin 2009). As we are interested in the region distant enough
from the ‘central engine’, we consider a simple isotropic model of
the radiation field (i.e. energy density U = Uiso = const). Actually,
our goal is simply evaluating Uiso, which is necessary to explain the
observable deceleration of jets on a scale of 50–100 pc.

This article is organized as follows. First, in Section 2, the ne-
cessity of using a two-fluid MHD approximation for highly mag-
netized winds and jets in the presence of an external photon field
is discussed. In Section 3, starting with the basic two-fluid MHD
equations, the appearance of a longitudinal electric field under the
drag force redistributing electric charges is established. This makes
it possible to determine the change in particle energy. The beam
damping resulting from particle loading is discussed in the ac-
companying article (Beskin & Nokhrina in preparation). Finally,
in Section 4 the main results of our study, including astrophysical
applications, are formulated.

2 A PROBLEM

First, let us formulate the main unsolved problem we are go-
ing to discuss. Up to the present, the properties of highly mag-
netized winds and jets have been mainly described analytically
(Michel 1969; Goldreich & Julian 1970; Heyvaerts & Nor-
man 1989; Appl & Camenzind 1992; Beskin, Kuznetsova &
Rafikov 1998; Beskin & Nokhrina 2006) and numerically (Komis-
sarov 1994; Ustyugova et al. 1995; Bogovalov & Tsinganos
1999; Komissarov et al. 2007; Tchekhovskoy, McKinney &
Narayan 2008, 2009; Bucciantini et al. 2009; Porth et al.
2011; McKinney et al. 2012) using the MHD approximation.
Recently, the first steps were made in using the particle-in-cell (PIC)
numerical simulation (Sironi & Spitkovsky 2009; Beal, Guillori &
Rose 2010), but these explorations are still at the initial stage.

It is important for us to introduce the main dimensionless param-
eters describing an ideal MHD flow, namely the particle multiplicity
λ, the magnetization parameter σ M and the compactness parame-
ter la. First, to describe the flow number density we introduce the
so-called particle multiplicity,

λ = n(lab)

nGJ
, (1)

where nGJ = |ρGJ|/e and ρGJ = �0B0/(2πc) is the Goldreich &
Julian (1969) charge density, i.e. the minimum charge density re-
quired for screening of the longitudinal electric field in the flow.
Here B0 is the poloidal magnetic field in a jet and �0 is the central
engine angular velocity. As was shown by Nokhrina et al. (2015),

for active galactic nuclei the multiplication parameter can be very
large: λ ∼ 1011–1013.

Next, the Michel (1969) magnetization parameter σ M shows by
how much the electromagnetic energy flux near the central engine
can exceed the particle energy flux. The value σ M corresponds to
the maximal bulk Lorentz factor of a plasma that can be reached in
the case where the entire electromagnetic energy is transferred to
the particle flow. In other words, σ M is the maximum Lorentz factor
that can be achieved in the magnetized wind. For cylindrical flow,
σ M can be determined as

σM = �0eB0r
2
jet

4λmec3
, (2)

where rjet is the jet’s transverse dimension.
The usability of these two parameters arises from the fact that

their product depends only on the total energy losses Wtot and hence
can be determined from observations. Indeed, as was shown by
Beskin (2010),

λσM ∼
(

Wtot

WA

)1/2

, (3)

where WA = m2
ec

5/e2 ≈ 1017 erg s−1. This value corresponds to
the minimum energy losses of a ‘central engine’ that can acceler-
ate particles up to relativistic energies. Hence, we obtain λσ M ∼
1014 for ordinary jets from active galactic nuclei (AGNs). Another
representation of the product λσ M is

λσM ∼ eErrjet

mec2
, (4)

where Er ∼ (�0rjet/c)B0. As we see, this value corresponds to the
total potential drop across the jet.

Finally, the compactness parameter

la = σTUisoR

mec2
(5)

is in fact the optical depth due to Thomson cross-section σ T at
distance R in a photon field with energy density Uiso. Below, it is
important that the parameter la provides an upper limit of particle
energy in the acceleration region. On the other hand, a large la is
necessary for effective particle production.

It is important to note that we consider only a leptonic model
of relativistic jets in this article. For this reason, we normalize all
the values on electron mass me. This approach is reasonable for the
very central parts of a jet connected with the black hole horizon by
magnetic field lines (and hence loaded by secondary e+e− plasma
generated by photon–photon conversion). The numerical simula-
tions mentioned above demonstrate a regular magnetic field and
energy flux in this region. Regarding the peripheral part of a jet
connecting with the accreting disc, special consideration including
reconnection is necessary. This is beyond the scope of the present
approach.

It is important to note that the one-fluid MHD approach has sev-
eral serious restrictions. Indeed, the well-known freezing-in condi-
tion E + v × B/c = 0 results in two consequences:

E‖ = 0, (6)

E⊥ < B, (7)

namely a zero longitudinal electric field and a small perpendicu-
lar electric field in comparison with the magnetic one. The Ferraro
(1937) isorotation law, i.e. the conservation of so-called field angular
velocity �F (see below) along magnetic tubes, is the mathematical
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formulation of this property. As a result, there is a very large poten-
tial difference between the centre and the boundary of a jet up to the
very end of a flow, where the jet meets the external media (lobes in
AGNs, Herbig–Haro (HH) objects in young stellar objects (YSO),
stellar wind in close TeV binaries).

On the other hand, it is impossible to describe the interaction of
external media with a highly magnetized flow without taking this
potential drop into consideration. Indeed, in neglecting E⊥ we fail
to take into consideration the role of the Poynting flux, which is
the main actor in our play. As a result, during such interactions
domains with non-zero longitudinal electric field or with E > B are
expected to appear, leading to very effective particle acceleration
(Beskin 2010). Nevertheless, for the present the role of the Poynting
flux during the interaction with external media has been considered
only indirectly, e.g. by adding a large enough toroidal magnetic
field, the energy density of which is similar to that of magnetized
flow (Bogovalov et al. 2008; de la Cita et al. 2016). Remember
that the general properties of a MHD shock containing an arbitrary
Poynting flux were formulated more than ten years ago (Double
et al. 2004).

Effective particle acceleration can take place even without exter-
nal media. As was demonstrated many years ago (Beskin, Gure-
vich & Istomin 1993; Beskin & Rafikov 2000), if there is some
restriction on the longitudinal electric current circulating in the
magnetosphere of a radio pulsar, the region with E > B appears
in the vicinity of the light cylinder RL = c/�. As a result, there
must be very effective particle acceleration up to the bulk Lorentz
factor � ∼ σ M in the narrow region �r ∼ RL/λ. It is worth not-
ing that such sudden acceleration was recently proposed to explain
pulse TeV radiation from the Crab pulsar (Aharonian, Bogovalov
& Khangulian 2012).1 Moreover, recent PIC modelling of an ax-
isymmetric pulsar magnetosphere (Cerutti et al. 2015) also demon-
strates very effective particle acceleration near the light cylinder up
to γ ∼ σ M.

Here it is important to note that not only the one-fluid but even
the two-fluid MHD approximation is insufficient to describe the
interaction of a highly magnetized flow with external media. As
was shown by Beskin et al. (1993) and Beskin & Rafikov (2000),
effective particle acceleration in the domain with E > B is inevitably
accompanied by the disappearance of the radial velocity. This im-
plies a many-fluid regime, which cannot be described analytically.
The same is true for other dissipative processes, e.g. the magnetic
reconnection that was also discussed in connection with energy
release in a highly magnetized flow, mainly phenomenologically
(Romanova & Lovelace 1992; Drenkhahn & Spruit 2002; Bing &
Huirong 2011; McKinney & Uzdensky 2012; Golan & Levinson
2015; Levinson & Globus 2016) and numerically (Takamoto 2013;
Barkov & Kommisarov 2016; Del Zanna et al. 2016). In particular,
as was shown by Levinson & Globus (2016), in some cases such
turbulence can accelerate particles even in the presence of a drag
force. These processes are beyond the scope of our present work.

In this article, we are not going to discuss the actual interaction
of a jet with external media, but rather try to evaluate the role of
the external photon field in the hydrodynamical retardation of a
jet. In this case, the two-fluid approximation allows us to consider
only a self-consistently longitudinal electric field and disturbance
of magnetic surfaces. As a result, a one-fluid validity condition will
be formulated.

1 The title of this article is ‘Abrupt acceleration of a cold ultrarelativistic
wind from the Crab pulsar’.

Figure 1. Drag force Fdrag results in the appearance of a radial drift current
and redistribution of the electric charges, diminishing the radial electric field
and, finally, damping the Poynting flux. The particle energy actually remains
constant, as the negative work of the drag force is almost equal to the energy
derived from the intersection of equipotential surfaces.

3 R A D I ATI O N D R AG

3.1 Qualitative considerations

First, let us consider the interaction of a magnetically dominated
jet with an isotropic photon field from a qualitative viewpoint. Far
enough from the axis of rotation, without drag, particle motion
along the jet corresponds to an electric drift in radial electric Er and
toroidal magnetic Bϕ � Bz fields (Tchekhovskoy et al. 2008; Beskin
2009). It is clear that the drag force Fdrag directed along the jet results
in the radial drift of electrons and positrons in opposite directions
(see Fig. 1). The appropriate electric current can be evaluated as

jr ∼ λρGJVd, (8)

where

Vd ∼ c
Fdrag

eBϕ

(9)

is the drift velocity. Such the current diminishes the toroidal mag-
netic field Bϕ . Simultaneously, redistribution of electric charges
diminishes the radial electric field Er. These two processes result in
a reduction of the Poynting vector flux.

As in the magnetically dominated jet Er ≈ Bϕ , the energy equation
for the time-independent flow ∇ S = − j E can be written as

c

4π

dB2
ϕ

dz
≈ −jrBϕ. (10)

MNRAS 463, 3398–3408 (2016)

 by guest on O
ctober 10, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


On the deceleration of jets - radiation drag 3401

Using relation (3) and evaluations Bϕ/Bz ∼ rjet/RL and Wtot ∼
(c/4π)B2

ϕr2
jet, we finally obtain that the characteristic retardation

scale Ldr:

Ldr ∼ σM
mec

2

Fdrag
. (11)

The same evaluation can be inferred directly from the continuity
equation ∇ j = 0:

jr

rjet
∼ j‖

Ldr
, (12)

where j‖ ≈ ρGJc.
Hence, the work Adr = FdragLdr done by drag force Fdrag at distance

Ldr (resulting in IC photons release of the jet energy flux),

Adr ∼ σMmec
2, (13)

equals the particle energy corresponding to the total energy trans-
ferred from the electromagnetic Poynting flux to the plasma outflow
(Beskin & Rafikov 2000). This means that our evaluation of the
retardation scale is correct. However, as this force acts almost per-
pendicular to the large toroidal magnetic field Bϕ ∼ (�0rjet/c)B0,
the energy of particles remains constant in the first approximation.
The point is that the energy loss −Fdragvz resulting from the drag
force is fully compensated by the energy eErVr gained by the par-
ticles due to their radial drift motion along the radial electric field.
In other words, the particle energy actually remains constant, as the
negative work of the drag force is almost equal to the energy derived
from the intersection of equipotential surfaces.

Thus, the drag force acts on plasma particles in a highly magne-
tized wind but does not diminish particle energy; only the Poynting-
vector flux diminishes as both the toroidal magnetic and radial elec-
tric fields decrease along the jet. This was first demonstrated by
Beskin et al. (2004). Regarding particle deceleration, this effect
arises from the second-order approximation, taking into account
the diminishment of integrals of motion.

3.2 Cylindrical flow

3.2.1 Basic equations

In this section, we are going to consider the interaction of a cylin-
drical magnetically dominated jet with an isotropic photon field
quantitatively. Some simplifications are used to analyse this pro-
cess analytically. First, as has been already stressed, we discuss a
leptonic model of relativistic jets. Secondly, we consider below a
pure cylindrical jet. This assumption is more serious than one might
imagine at the first glance. The point is that cylindrical geometry
implies infinite curvature of the poloidal magnetic field. In this case,
there is well-known asymptotic behaviour for particle Lorentz fac-
tors in the magnetically dominated flow � ≈ �r⊥/c, which will be
used in what follows. Remember that, for a finite curvature radius
Rc of the poloidal magnetic field, another asymptotic solution � ≈
(Rc/r⊥)1/2 is possible.

Finally, a magnetically dominated jet (a jet that does not reach its
terminal Lorentz factor � = σ M) is considered. It is not clear that
the flow remains highly magnetized up to distances 10–100 pc from
the central engine under this consideration. Nevertheless, this case
is more interesting in terms of physics, in that it is able to take into
consideration the interaction of the photon field with the Poynting
flux. Some astrophysical applications of Fanaroff–Riley Class I and
II (FRI–FRII) classification are discussed in Section 4.

Thus, following Beskin et al. (2004), we write down the set of
time-independent Maxwell equations and two-fluid equations of
motion for an electron–positron plasma:

∇ E = 4πρe, ∇ × E = 0, (14)

∇ B = 0, ∇ × B = 4π

c
j , (15)

(v±∇) p± = e

(
E + v±

c
× B

)
+ F±

drag. (16)

Here, E and B are the electric and magnetic fields, ρe and j are the
charge and current densities and v± and p± are the speed and mo-
mentum of the particles, respectively. Finally, Fdrag is the radiation
drag force. In the case of an isotropic photon field (Blumenthal &
Gould 1970; Rybicki & Lightman 1981),

F±
drag = −4

3

v

v
σTUiso (γ ±)2, (17)

where γ ± are the Lorentz factor of the particles.
As is known, in the axisymmetric case the electric and magnetic

fields can be expressed through three scalar functions �(r⊥, z),
�F(r⊥, z) and I(r⊥, z):

B = ∇� × eϕ

2πr⊥
− 2I (�)

cr⊥
eϕ, (18)

E = −�F(�)

2πc
∇�. (19)

Here, �(r⊥, z) is the magnetic flux, I(�) is the total electric current
within the same magnetic tube and �F(�) is the so-called field
angular velocity (more precisely, the angular velocity of plasma
drifting in electromagnetic fields).

There is a force-free solution of the general equations for cylin-
drical outflow (14)–(16) (Istomin & Pariev 1994):

4πI (�) = 2 �F(�)�, (20)

corresponding to a homogeneous poloidal magnetic field,

B (0)
z = B0, (21)

so that � (0) = πB0r
2
⊥, i.e. it does not depend on coordinate z,

B (0)
ϕ = − 2I

cr⊥
, (22)

E(0)
r = B (0)

ϕ (23)

and

B (0)
r = 0, E(0)

ϕ = 0, E(0)
z = 0. (24)

It is important that this solution can be realized by massless particles
only, moving along the jet with a velocity equal to that of light:

v(0)
z = c, v(0)

r = 0, v(0)
ϕ = 0. (25)

Moreover, this solution applies to an arbitrary profile of angular
velocity �F(�). In particular, the most interesting case I(� jet) =
�F(� jet) = 0, corresponding to zero total electric current flowing
within the jet, can be considered. For this reason, here and below
we consider �F(r⊥) as an arbitrary function.

As previously discussed, in the cylindrical geometry we seek the
first-order corrections for the case v 
= c in the following manner:

n+ = �0B0

2πce

[
λ − K(r⊥) + η+(r⊥, z)

]
, (26)
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n− = �0B0

2πce

[
λ + K(r⊥) + η−(r⊥, z)

]
, (27)

v±
z = c

[
1 − ξ±

z (r⊥, z)
]
, (28)

v±
r = cξ±

r (r⊥, z), (29)

v±
ϕ = cξ±

ϕ (r⊥, z). (30)

Here �0 = �F(0) and λ = ne/nGJ (1) is the multiplicity parameter
again. As already stressed, the evaluation λ ∼ 1011–1013 is valid
for AGNs. Below, in order to simplify, we consider λ as a constant.
Also,

K(r⊥) = 1

4r⊥

d

dr⊥

(
r2
⊥

�F

�0

)
(31)

describes the charge density

ρ0
e (r⊥) = −�0B0

πc
K(r⊥) (32)

and current density j 0
z = ρ0

e c transverse profiles. In particular,
K(0) = 1/2 and

π

∫ rjet

0
K(r ′)r ′ dr ′ = 0, (33)

so both the total charge and total longitudinal current in the jet
vanish. Finally, the disturbances of the electric potential �(r⊥, z)
and magnetic flux �(r⊥, z) can be written as

�(r⊥, z) = B0

c

[∫ r⊥

0
�F(r ′)r ′ dr ′ + �0r

2
⊥δ(r⊥, z)

]
, (34)

�(r⊥, z) = πB0r
2
⊥ [1 + f (r⊥, z)] . (35)

This gives

Br = −1

2
r⊥B0

∂f

∂z
, (36)

Bϕ = −�0r⊥
c

B0

[
�F

�0
+ ζ (r⊥, z)

]
, (37)

Bz = B0

[
1 + 1

2r⊥

∂

∂r⊥

(
r2
⊥f

)]
, (38)

Er = −�0r⊥
c

B0

[
�F

�0
+ 1

r⊥

∂

∂r⊥

(
r2
⊥δ

)]
, (39)

Ez = −�0r
2
⊥

c
B0

∂δ

∂z
. (40)

We see that the values |δ| ∼ 1 and |f| ∼ 1 correspond to almost full
dissipation of the Poynting flux.

Now, substituting expressions (26)–(40) into (14)–(16), in the
first-order approximation we obtain the following linear system of
equations:

− 1

r⊥

∂

∂r⊥
(r2

⊥ζ )

= 2(η+ − η−) − 2
[
(λ − K) ξ+

z − (λ + K) ξ−
z

]
, (41)

2(η+ − η−) + 1

r⊥

∂

∂r⊥

[
r⊥

∂

∂r⊥

(
r2
⊥δ

)] + r2
⊥

∂2δ

∂z2
= 0, (42)

r⊥
∂ζ

∂z
= 2

[
(λ − K) ξ+

r − (λ + K) ξ−
r

]
, (43)

−r2
⊥

∂2f

∂z2
− r⊥

∂

∂r⊥

[
1

r⊥

∂

∂r⊥

(
r2
⊥f

)]

= 4
�0r⊥

c

[
(λ − K) ξ+

ϕ − (λ + K) ξ−
ϕ

]
, (44)

∂

∂z

(
ξ+
r γ +) = −ξ+

r Fd(γ +)2

+ 4
λσM

r2
jet

[
− ∂

∂r⊥
(r2

⊥δ) + r⊥ζ−r⊥
�F

�0
ξ+
z + c

�0
ξ+
ϕ

]
,

(45)

∂

∂z

(
ξ−
r γ −) = −ξ−

r Fd(γ −)2

− 4
λσM

r2
jet

[
− ∂

∂r⊥

(
r2
⊥δ

) + r⊥ζ − r⊥
�F

�0
ξ−
z + c

�0
ξ−
ϕ

]
,

(46)

∂

∂z

(
γ +) = −Fd(γ +)2 + 4

λσM

r2
jet

(
−r2

⊥
∂δ

∂z
− r⊥

�F

�0
ξ+
r

)
, (47)

∂

∂z

(
γ −) = −Fd(γ −)2 − 4

λσM

r2
jet

(
−r2

⊥
∂δ

∂z
− r⊥

�F

�0
ξ−
r

)
, (48)

∂

∂z

(
ξ+
ϕ γ +) = −ξ+

ϕ Fd(γ +)2

+ 4
λσM

r2
jet

(
−1

2

cr⊥
�0

∂f

∂z
− c

�0
ξ+
r

)
, (49)

∂

∂z

(
ξ−
ϕ γ −) = −ξ−

ϕ Fd(γ −)2

− 4
λσM

r2
jet

(
−1

2

cr⊥
�0

∂f

∂z
− c

�0
ξ−
r

)
. (50)

Here, σ M (2) is the Michel magnetization parameter again and
Fd ≈ la/R is the normalized radiation drag force,

Fd = 4

3

σTUiso

mec2
. (51)

3.2.2 Zero MHD approximation

As already stressed, expression (20) can be considered as a zero
force-free approximation describing the cylindrical flow of massless
particles. In the absence of a drag force, we can find the exact MHD
solution describing a pure cylindrical flow. Indeed, for

(λ − K) ξ+
z = (λ + K) ξ−

z (52)

and

ξ±
ϕ = xξ±

z , (53)

a cylindrical flow with ξ±
r = 0, ζ = δ = f = 0 results in ∂/∂z = 0.

Here and below we use the dimensionless distance from the axis
x0 = �0r⊥/c and

x = �F(r⊥)r⊥/c. (54)
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We see that in this case it is necessary to introduce a small
difference in the velocities of particles,

ξ+
z − ξ−

z = 2K

λ
ξz ∼ λ−1ξz, (55)

where ξz = (ξ+
z + ξ−

z )/2 is the hydrodynamical velocity. This is
unsurprising, because equations (41)–(50) describe the flow in the
MHD (not force-free) approximation. On the other hand, the mean
particle energy is still a free function.

Below, we use the following notations:

� = γ + + γ −

2
, G = γ + − γ −, (56)

P+ = ξ+
z + ξ−

z

2
, P− = ξ+

z − ξ−
z , (57)

Q+ = ξ+
ϕ + ξ−

ϕ

2
, Q− = ξ+

ϕ − ξ−
ϕ . (58)

Finally, as a free function we choose

�2 = �2
0 + x2, (59)

where �0 ∼ 1 is the free parameter. Expression (59) corresponds
to the well-known analytical asymptotic solution obtained in many
articles (see Beskin 2009, and references herein). Then, using rela-
tions (52)–(53), one can obtain

Q± = xP±, (60)

P− = 2
K

λ
P+, (61)

Q− = 2
K

λ
Q+, (62)

G = −�3(1 − x2P+)P−, (63)

where

P+ = 1

�(� + √
�2 − x2)

. (64)

In the last expression, we leave a square root in the denominator to
avoid the subtraction of two almost equal values � and

√
�2 − x2

in the numerator.

3.3 Drift approximation

3.3.1 Two-fluid effects

Now we can use the drag-free MHD solution (52)–(53) and (59)–
(64) as a zero approximation and evaluate the action of a drag force,
finding small disturbances in the linear approximation. It is clear
that in this case all the disturbances including longitudinal electric
field E‖ are proportional to drag force Fdrag. Thus, under some
conditions the electric force eE‖ acting on the charged particle can
be larger than the retardation drag force Fd. In this case, one type of
particle is accelerated while another is decelerated more efficiently
than by action of the drag force alone, resulting in a full stop at some
point. Thus, this condition corresponds to the non-hydrodynamical
regime. For this reason, determination of the ratio eE‖/Fdrag is one
of the main goals of our study.

Equations (41)–(50) can be simplified in the drift approximation.
Indeed, a well-known expression for the drift velocity,

V dr = c
(eE + Fdrag) × B

eB2
, (65)

determines two velocity components perpendicular to the magnetic
field B.

It is necessary to remember that, in the presence of any force F
having a longitudinal component to the magnetic field, expression
(65) is not valid. On the other hand, in the reference frame in which
the force F is parallel to the magnetic field, one finds that

|Vd|
c

=
1 + ε2

⊥ + ε2
‖ −

√
(1 − ε2

⊥)2 + ε2
‖ (2 + 2ε2

⊥ + ε2
‖ )

2ε⊥
, (66)

where ε⊥, ‖ = F⊥, ‖/eB, the direction of the drift velocity remaining
the same. As we see, the difference from the standard expression
(65), |Vdr|/c = ε⊥, is proportional to ε2

‖ . Hence, in the linear ap-
proximation this correction can be neglected.

As a result, determining all the velocity components and substitut-
ing them into equations of motion (47)–(48), as shown in Appendix
A, one obtains

∂γ ±

∂z
= − (1 − x2P+)2

(1 + x2)
Fd(γ ±)2

∓ 4λσM

r2
jet

(1 − x2P+)

(1 + x2)

(
−r2

⊥
∂δ

∂z
+ r2

⊥
�F

�0

1

2

∂f

∂z

)
. (67)

Expression (67) (which is one of the main results of our work) can
also be obtained directly if we remember that the general expression

dE
dt

= (Fdrag + eE)v (68)

in the drift approximation (65) is equal to

dE
dt

= (F‖ + eE‖)v‖. (69)

In other words, only the longitudinal component of the force (and
only the longitudinal component of the velocity) can change the
particle energy. This property is responsible for the appearance of
the factors (1 + x2)−1 and

(1 − x2P+) ≈ �0

�
� 1. (70)

As we see, together with the drag force (first term) always di-
minishing the particle energy, equation (67) contains the action of a
longitudinal electric field E‖ having two sources. In addition to the
disturbance of the electric potential δ, longitudinal electric field E‖
appears due to a disturbance of magnetic surfaces f. The last term
obviously vanishes if

δ = 1

2

�F

�0
f , (71)

i.e. if magnetic surfaces are equipotential. Thus, in the self-
consistent analysis of the longitudinal electric field, not only the
disturbance of electric potential δ but also the disturbance of the
magnetic surfaces f should be included.

As already stressed, all linear disturbances are to be proportional
to the drag force Fd. To determine these relations, let us introduce
the values

g+ = δγ + + δγ−
2

, g− = δγ + − δγ−, (72)

p+ = δξ+
z + δξ−

z

2
, p− = δξ+

z − δξ−
z , (73)

q+ = δξ+
ϕ + δξ−

ϕ

2
, q− = δξ+

ϕ − δξ−
ϕ . (74)
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Substituting them into (41)–(50), we obtain

q− = xp−, (75)

q+ = xp+ + 1

RL

∂

∂r⊥
(r2

⊥δ) − x0ζ, (76)

g+ = −�3p+ + x�3P+q+ + 1

4
x�3P−q−, (77)

g− = −�3(1 − x2P+)p− + x�3P−q+, (78)

g+ = − (1 − x2P+)2

1 + x2
�2(Fdz), (79)

g− = −8λσM(1 − x2P+)

1 + x2

r2
⊥

r2
jet

(
δ − 1

2

�F

�0
f

)
, (80)

ζ = − A

σM
�2(Fdz) + 4K

xx0

1 + x2
δ + 2K

1 − x2P+
1 + x2

f , (81)

1

r⊥

∂

∂r⊥

[
r⊥

∂

∂r⊥

(
r2
⊥δ

)] + r2
⊥

∂2

∂z2
δ − 1

r⊥

∂

∂r⊥

(
r2
⊥ζ

)
= −2λp− + 4Kp+, (82)

−r2
⊥

∂2

∂z2
(f ) − r⊥

∂

∂r⊥

[
1

r⊥

∂

∂r⊥

(
r2
⊥f

)]

= 4λxx0p− − 8x0 Kq+. (83)

As is shown in Appendix A, the system of equations (75)–(83)
can be rewritten as two second-order ordinary differential equations
(A19)–(A20) for D = x2

0δ and F = xx0f, resulting in

d2

dx2
0

(
D − F

2

)
− 16λ2σM

�3x2
jet

(
D − F

2

)
+ . . . = 0 (84)

outside the light cylinder. Hence, the physical branch of equa-
tions (A19)–(A20) corresponds to a quickly diminishing solution
(D − F/2) → 0 with the spatial scale �r⊥ � rjet, where

�r⊥ = �3/2

4λσ
1/2
M

rjet. (85)

Thus, for �r⊥ � rjet (and for λσ M � 1) one can neglect the
left-hand side of equation (80). As we see, in this case we return
to the one-fluid MHD condition (71). Finding q+ from (77) and ζ

from (76), we obtain two equations for p− and δ:

2λp− − 4Kxx0P+
(1 − x2P+)

1

r⊥

∂

∂r⊥
(r2

⊥δ)

+ 16K2(x2 + 1 − x2P+)x2
0P+

(1 + x2)(1 − x2P+)
δ

= 4Kxx0P+
(1 − x2P+)

A�2

σM
(Fdz) − 2

A�2

σ
(Fdz), (86)

4λxx0p− − 8 Kx2
0

(1 − x2P+)

1

r⊥

∂

∂r⊥

(
r2
⊥δ

)

+ 32K2x3
0x

(1 − x2P+)(1 + x2)
δ = 8 Kx0x

(1 − x2P+)

A�2

σ
(Fdz). (87)

Here,

A(r⊥) = r2
jet

r2
⊥

[
1 − (1 − x2P+)2

1 + x2

]
�0

�F
, (88)

Figure 2. Hydrodynamical (|g−| � |g+|) and non-hydrodynamical (|g−|
> |g+|) regimes of drag action. In the first case, Lorentz factors of electrons
γ − and positrons γ + actually coincide with the mean value �. In the second
case, one type of particle is accelerated while another is decelerated more
efficiently than by action of the drag force alone, resulting in a full stop at
some point.

so that x2A ∼ x2
jet � 1 (A ∼ 1 for x ∼ xjet), and we neglect all

the terms containing ∂2/∂z2 (for small Fd, derivatives along the jet
are small), x−2 and (1 − x2P+) � 1. The full version is given in
Appendix A.

3.3.2 Qualitative considerations

First, let us discuss the result obtained above qualitatively; the ap-
propriate numerical evaluations will be given in the next section.
Evaluating r−1

⊥ ∂(r2
⊥δ)/∂r⊥ as δ, one can obtain

δ = kδ

A

σM
�2(Fdz), (89)

p− = kp

λσM

KA

(1 − x2P+)
�2(Fdz), (90)

where kδ ∼ kp ∼ 1. As we see, together with the clear condition
|δ| ∼ 1 for the full damping of the Poynting flux, expression (89)
for δ immediately reproduces our evaluation (11) for the length
Ldr = σ Mmec2/Fdrag; now it can be rewritten as

Ldr ∼ σM

�2Fd
. (91)

Further, using expression (90) for p−, together with (75) and (77),
one can obtain

g− ∼ A

λσM
�5 (Fdz). (92)

Together with (79), this gives

g−
g+

∼ 1

λσM

(1 + x2)A

(1 − x2P+)2
�3. (93)

Relation (93) is actually one of our main results, separating hydro-
dynamical and non-hydrodynamical regimes of drag force action.
Indeed, for multiplicity λ > λ� large enough, where

λ� = x2
jet�

3

σM(1 − x2P+)2
, (94)

the difference in Lorentz factors of electrons and positrons is negli-
gible and we deal with a one-fluid MHD flow. On the other hand, for
|g−| > |g+| the drag force Fdrag is smaller than the electrostatic one
eE‖. As a result, as is shown in Fig. 2, one type of particle is accel-
erated while another is decelerated more efficiently than by action
of the drag force alone, resulting a in full stop at some point. It is
clear that in this case a hydrodynamical description is impossible.
As condition (94) can be rewritten as

λσM = x2
jet�

5

�2
0

, (95)
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we see that, according to (3), the non-hydrodynamical regime can
be realized for small Wtot < W�, where

W� = x4
jet�

10

�4
0

WA, (96)

here again WA = m2
ec

5/e2 ≈ 1017 erg s−1. The corresponding Poyt-
ing flux is less than

S� = x2
jet�

10

�4
0

WA. (97)

Accordingly, in the non-hydrodynamical regime the distance Lst to
the stop point can be evaluated as

Lst ∼ λσM

�4Fd
. (98)

Finally, in the one-fluid approximation corresponding to condi-
tion |g−| � |g+|, we can write

∂

∂z
� = − (1 − x2P+)2

1 + x2
Fd�

2. (99)

Certainly, it is possible to use this solution for only a small distur-
bance of the Lorentz factor �. Nevertheless, we can estimate the
distance L� of the essential diminishing of the bulk particle energy
mec2� of the motion on the scale L:

L� ∼ x2
jet�

�2
0Fd

. (100)

We see that this distance is much larger than Ldr. This is not sur-
prising, because in the linear approximation, as already stressed,
the particle energy actually remains constant. For this reason, it is
impossible to use the value L� to estimate retardation length.

3.3.3 Quantitative considerations

Finally, below we present the result of numerical integration of the
linear system (86)–(87). Neglecting p− and the derivatives ∂/∂z,
one can obtain the following second-order ordinary differential
equation for determination δ (for more details, see Appendix A):

2x
d

dx0

[
x0

d

dx0
D

]
− 2x0

d

dx0

[
1

x0

d

dx0

(
�0

�F
D

)]

+ 8x
d

dx0

[
K

(x0x + �0/�F − x2P+�0/�F)

(1 + x2)
D

]

+ 8Kx0
d

dx0
D − 32K2x0(x2 + 1 − x2P+)

x(1 + x2)
D

= −2x
d

dx0

[
x2

0G
] − 8Kx2

0G, (101)

where D = x2
0δ, G = A�2(Fdz)/σM, x0 = �0r⊥/c and

x = �(r⊥)r⊥/c again. Regarding the angular velocity profile �F(r⊥)
that determines the coefficient K (31), we use the simplest relation,

�F(r⊥) = �0

(
1 − r2

⊥
r2

jet

)
, (102)

corresponding to zero total electric charge and electric current
within the jet, �F(rjet) = 0.

Additional we need to give some clarifications about chosen
boundary conditions. As shown in Appendix B, to avoid a longitu-
dinal electric field on the jet axis, it is necessary to put D(0) = 0.

Figure 3. Solution D = x2
0δ of equation (101) for xjet = 104 and for dif-

ferent values of σM. Solid, dashed and dotted lines for each values of the
parameter σM correspond to three different values of Fdz: 1, 1.1 and 1.2,
respectively. The upper curve corresponds to undisturbed electric potential
�

(0)
e .

Figure 4. Dimensionless function kδ , which does not actually depend on
magnetization parameter σM.

Together with the regularity condition at the light cylinder, x = 1,
this allows us to obtain the full solution of the problem.

As is shown in Fig. 3, the solution of equation (101) gives negative
values for the disturbance of electric potential δ. This implies that the
disturbance δ resulting from the drag force compensates gradually
for the electric potential of the jet (upper curve). Moreover, as is
shown in Fig. 4, our evaluation (89) reproduces the exact solution
of equation (101) well enough.

Finally, as, according to (71), the disturbance of magnetic sur-
faces f should be negative, the magnetic flux �(r⊥, z) (35) can be
rewritten as

�(r⊥, z) = πB0r
2
⊥ (1 − Cz) , (103)

where C > 0. This leads to the appearance of a positive radial
component of the magnetic field Br (36), i.e. to decollimation of the
jet.2 However, as one can easily check, the width of the jet increases
essentially only for δ ∼ 1, when almost all electromagnetic energy
will be transferred into IC photons.

2 Here, we consider the case Bz > 0.

MNRAS 463, 3398–3408 (2016)

 by guest on O
ctober 10, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


3406 V. S. Beskin and A. V. Chernoglazov

4 A S T RO P H Y S I C A L A P P L I C AT I O N S A N D
DISCUSSION

For simple geometry, we have demonstrated the possibility of deter-
mining the small correction of the one-fluid ideal outflow resulting
from radiation drag force. In comparison with the article by Li et al.
(1992), both the disturbance of magnetic surfaces and the electric
potential were studied self-consistently. As a result, the method al-
lows us to find the tendency of the drag action on an ideal MHD
magnetically dominated outflow, as well as to evaluate the condi-
tions under which this disturbance becomes large.

Let us try to evaluate the real role of radiation drag in the dynamics
of relativistic jets in AGNs. The energy density Uiso at a distance R
from the ‘central engine’ with total luminosity Ltot can be estimated
as Utot ∼ 10−3 erg cm−3 at distance R = 10 pc. Assuming that
Uiso ∼ 0.1Utot ∼ 10−4 erg cm−3 (see e.g. Joshi, Marscher & Bottcher
2014), the length of hydrodynamical retardation Ldr given by (11)
can be estimated as

Ldr ∼ 300
(σM

10

) (
�

10

)−2 (
Ltot

10−4 erg cm−3

)−1

pc. (104)

Thus, for � ∼ σ M ∼ 10, recently obtained by Nokhrina et al. (2015)
from analysis of about 100 sources using core-shift technics, the
distance is quite reasonable to explain the observable retardation on
a scale of R ∼ 100 pc.

On the other hand, on a scale of R ∼ 10 kpc, corresponding to
the size of the Galaxy, where Uiso ∼ 10−10 erg cm−3, the retardation
length Ldr is too large to prevent the jet material from reaching the
lobes. To conclude, in our opinion, an isotropic photon field can
be considered as one of the possible reasons for jet deceleration in
AGNs.

Finally, it is very interesting to discuss the photon drag action in
connection with the Fanaroff & Riley (1974) classification. At first
glance, deceleration is more effective in FRII objects, i.e. in objects
in which an ambient radiation field is more intense. However, as
was demonstrated above, in objects with higher magnetization σ M

the drag force acts indirectly, diminishing mainly the electromag-
netic flux. As far as FRI sources, in which one can expect particle-
dominated flow at pc scales, are concerned, drag is much more
effective. We are going to consider the statistics of such sources in
Paper III.
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APPENDIX A : LINEARIZATION IN THE DRI FT
APPROX IMATION

In this Appendix, we determine the linear disturbances to the cylin-
drical drag-free flow in the drift approximation. First, using the
definitions (36)–(38) for a total magnetic field B and clear expres-
sions V ‖ = (V B)B/B2 and V ⊥ = V − V || for any vector V , for
the perpendicular components of vectors e = E/B0 and Fdr we
obtain

er
⊥ = −x − x0

1

r⊥

∂

∂r⊥

(
r2
⊥δ

)
, (A1)

e
ϕ
⊥ = x

(x2 + 1)

(
1

2
xr⊥

∂f

∂z
− x0r⊥

∂δ

∂z

)
, (A2)

ez
⊥ = −x0r⊥

∂δ

∂z
− 1

x2 + 1

(
1

2
xr⊥

∂f

∂z
− x0r⊥

∂δ

∂z

)
, (A3)

F
ϕ
⊥ = − Fdγ

2√
1 − 2ξz + ξ 2

ϕ

(x + ξϕ)

1 + x2
, (A4)

Fz
⊥ = − Fdγ

2x√
1 − 2ξz + ξ 2

ϕ

(x + ξϕ)

1 + x2
, (A5)

F r
⊥ = 0. (A6)

Using these expressions, we now find for the r-component of the
drift velocity

ξ dr
r = − (x + ξϕ)

(x2 + 1)
Fdγ

2 − xx0r⊥
(x2 + 1)

∂δ

∂z
(A7)

and for the r-component of longitudinal velocity

(ξ‖)r = −1

2

(1 − xξϕ)

(1 + x2)
r⊥

∂f

∂z
. (A8)

Substituting these expressions into (47)–(48) and taking into ac-
count that ξϕ ≈ xP+ results in (67).

Further, combining (43), (47)–(48) and (67), we find

r⊥
∂ζ

∂z
= 4Kr⊥

�0

�F

∂δ

∂z

− Fd�
2

[
1 − (1 − x2P+)2

(1 + x2)

]
�0

�F

r2
jet

r⊥

+ 4K�0

r⊥�F

(1 − x2P+)

(1 + x2)

(
−r2

⊥
∂δ

∂z
+ r2

⊥
�F

2�0

∂f

∂z

)
, (A9)

where we put (γ +)2 + (γ −)2 = 2�2. Integrating, we obtain

ζ = A

σ

∫
Fd�

2 dz + 4K
xx0

(x2 + 1)
δ + 2K

(1 − x2P+)

(1 + x2)
f , (A10)

where A is given by (88). Finally, subtracting equation (46) from
(45) and neglecting the left-hand side, we obtain the following
expression:

q+ = xp+ + 1

RL

∂

∂r⊥

(
r2
⊥δ

) − x0ζ, (A11)

where again RL = c/�0 is the light-cylinder radius.

Finally, using definitions (56)–(58) and expressing γ + and γ −

through � and G, we have

1

(� + G/2)2
= 2

(
P+ + P−

2

)
−

(
Q+ + Q−

2

)2

, (A12)

1

(� − G/2)2
= 2

(
P+ − P−

2

)
−

(
Q+ − Q−

2

)2

. (A13)

For G � �, this yields

G = −�3(1 − x2P+)P− (A14)

and

g− = −(1 − x2P+)�3p− + xP−�3q+. (A15)

These relations lead to a system of equations (75)–(83).
As a result, expressing p+ from (77) and substituting it together

with ζ in (76), we obtain

q+ = − x

�3(1 − x2P+)
g+ + 1

(1 − x2P+)

1

RL

∂

∂r⊥
(r2

⊥δ)

+ x0

(1 − x2P+)

[
A

σ
�2(Fdz) − 4Kxx0

(1 + x2)
δ − 2K(1 − x2P+)

(1 + x2)
f

]
.

(A16)

Using this in (83), we establish

4λxx0p− + r⊥
∂

∂r⊥

[
1

r⊥

∂

∂r⊥

(
r2
⊥f

)] + 16K2x2
0

(1 + x2)
f

+ 32K2x3
0x

(1 − x2P+)(1 + x2)
δ − 8Kx2

0(
1 − x2P+

) 1

r⊥

∂

∂r⊥

(
r2
⊥δ

)

+r2
⊥

∂2f

∂z2
= 8Kx2

0

(1 − x2P+)

A

σ
G − 8 Kxx0(1 − x2P+)

1 + x2

G
�3

, (A17)

where G = �2(Fdz). Additionally, substituting (81) into (82) and
expressing p+, we obtain the second equation:

2λp− + 16K2x2
0P+(x2 + 1 − x2P+)

(1 + x2)(1 − x2P+)
δ + r2

⊥
∂2δ

∂z2

+ 1

r⊥

∂

∂r⊥

[
r⊥

∂

∂r⊥
(r2

⊥δ)

]
− 4

r⊥

∂

∂r⊥

[
r2
⊥ K

xx0

(1 + x2)
δ

]

− 2

r⊥

∂

∂r⊥

[
r2
⊥ K

(1 − x2P+)

1 + x2
f

]

− 4 Kxx0P+
(1 − x2P+)

1

r⊥

∂

∂r⊥
(r2

⊥δ) = − 1

r⊥

∂

∂r⊥
(r2

⊥
A

σ
G)

+ 4Kxx0P+
(1 − x2P+)

A

σ
G + 4K(1 − x2P+)

�3(1 + x2)
G. (A18)

Neglecting the longitudinal derivatives ∂2/∂z2, one can rewrite the
system of equations (A17)–(A18) as two second-order ordinary
differential equations for D = x2

0δ and F = xx0f:

d2D

dx2
0

= − 1

x0

dD

dx0
+ 1

x0

dY

dx0
− 2λp− + 4 Kp+, (A19)
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d2F

dx2
0

= −
[

1

x0
+ 2x

d

dx0

(
1

x

)]
dF

dx0
− 4λx2p−

+ 8Kxq+ −
[
x

d2

dx2
0

(
1

x

)
+ x

x0

d

dx0

(
1

x

)
− 1

x2
0

]
F .

(A20)

Here, Y = x2
0ζ ,

Y = 4Kxx0

(1 + x2)
D + 2Kx0(1 − x2P+)

x(1 + x2)
F − Ax2

0

σM
G, (A21)

G = �2(Fdz) and

λp− = 8λ2σM

�3x2
jet(1 + x2)

(
D − 1

2
F

)
+ 2KP+x

(1 + x2)

G
�3

+ 2KP+
(1 − x2P+)2

∂

∂x0
D − 2KP+

x0(1 − x2P+)2
Y ,

p+ = (1 − x2P+)

(1 + x2)

G
�3

+ xP+
(1 − x2P+)

∂

∂x0
D − xP+Y

x0(1 − x2P+)
,

q+ = (1 − x2P+)x

�3(1 + x2)
G + 1

(1 − x2P+)

dD

dx0
− Y

x0(1 − x2P+)
.

(A22)

Outside the light cylinder, x0 � 1, this gives

d2

dx2

(
D − F

2

)
− 16λ2σM

�3x2
jet

(
D − F

2

)
+ . . . = 0. (A23)

Hence, the physical branch of equations (A19)–(A20) corresponds
to a quickly diminishing solution (D − F/2) → 0 with the spatial
scale �x � 1:

(�x)2 = �3x2
jet

16λ2σM
. (A24)

Finally, for D = F/2, i.e. in the one-fluid MHD approximation
(E‖ = 0), equations (A17)–(A18) can be restated as (86)–(87).
Expressing p− from (A17) and putting it into (A18), we finally
obtain equation (101).

A P P E N D I X B : TOY M O D E L

A boundary condition D(0) = 0 for equation (101) is actually one of
the main non-trivial properties of the solution discussed above. The
point is that any finite central engine with dipole-like magnetic field
produces a quadrupole electric field, so that the potential difference
between its magnetic pole and infinity does not vanish. In contrast,
our solution corresponds to the zero (more precisely, very small)
electric field Ez along the rotational axis.

To demonstrate the possibility for the longitudinal electric field
Ez to be small (and vanishing at infinity), let us write down the
electric potential in the region z > 0 in the form

�e = �0B0

c
r2

jet

(
C + 1

2

r2
⊥

r2
jet

− 1

4

r4
⊥

r4
jet

)
exp

(
− z2

L2
dr

)
, (B1)

where we use expression (102) for angular velocity �F. For
Ldr → ∞, this corresponds to electric field E(0)

r (23) for arbitrary
constant C. In particular, it gives the same zero-order charge density
ρe (32). As already stressed, C < 0 (|C| ∼ 1) for Ldr → 0, i.e. for a
spatially limited quadrupole charge distribution.

On the other hand, for finite Ldr the disturbance of charge density
in the vicinity of the rotational axis for z ∼ rjet depends drastically
on constant C. Indeed, the additional charge density can be divided
into two terms: namely the negative part,

δρ(1)
e = −|C|�0B0

2πc

r2
jet

L2
dr

, (B2)

existing for C 
= 0 (and producing electric field Ez < 0 along the
rotation axis opposite the particle flow) and the positive one,

δρ(2)
e = �0B0

2πc

z2

L2
dr

, (B3)

having the same order of magnitude on the scale z ∼ rjet. This
implies that a small redistribution of the charge density in the base
of the flow can indeed screen the longitudinal electric field along
the jet.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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