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ABSTRACT
At present, there are theoretical models of radio pulsar evolution that predict both the alignment,
i.e. evolution of inclination angle χ between magnetic and rotational axes to 0◦, and its counter-
alignment, i.e. evolution to 90◦. At the same time, both models describe well the pulsar
distribution on the P–Ṗ diagram. For this reason, up to now it was impossible to determine
the braking mechanisms since it was rather difficult to estimate the evolution of the inclination
angle based on observations. In this paper, we demonstrate that the statistics of interpulse
pulsars can give us the key to solve the alignment/counter-alignment problem as the number
of interpulse pulsars (having both χ ∼ 0◦ and χ ∼ 90◦) drastically depends on the evolution
of the inclination angle.
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1 IN T RO D U C T I O N

Almost 50 yr after the discovery of radio pulsars, the problem of
the energy loss by neutron stars still remains unsolved (Manchester
& Taylor 1977; Smith 1977). In particular, evolution of the incli-
nation angle χ between the magnetic and rotational axes is still
unknown. At present, there are theoretical models that predict both
the evolution of the inclination angle to 0◦, i.e. alignment (Davis
& Goldstein 1970; Goldreich 1970; Good & Ng 1985; Philippov,
Tchekhovskoy & Li 2014) and its evolution to 90◦, i.e. counter-
alignment (Beskin, Gurevich & Istomin 1993). Both models are
good in describing the P–Ṗ diagram (which is directly observed),
but give completely different answers to the question of the evolu-
tion of the inclination angle (for which we have very few observa-
tions).

There have been many attempts to resolve the issue by analysing
the statistical distribution of radio pulsars (Rankin 1990; Tauris &
Manchester 1998; Faucher-Giguère & Kaspi 2006; Weltevrede &
Johnston 2008; Young et al. 2010; Gullón et al. 2014). In particular,
it was found both directly (i.e. by an analysis of the χ distribution)
and indirectly (i.e. from an analysis of the observed pulse width)
that statistically the inclination angle χ decreases with period P
as the dynamical age τD ≈ P/2Ṗ increases. At first glance, these
results definitely support an alignment mechanism. However, as was
demonstrated by Beskin et al. (1993), the average inclination angle
of the pulsar population, 〈χ (τD)〉, computed for observed pulsars,
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can decrease even if the inclination angles of individual pulsars
increases with time.

Indeed, for given values of the pulsar period P and magnetic field
B, secondary pair production over the magnetic polar cap is sup-
pressed at angles χ close to 90◦, when the magnetic dipole is nearly
orthogonal to the rotational axis. This is because the Goldreich–
Julian charge density ρGJ ≈ �Bcos χ/(2πc) is significantly reduced
at such angles. This in turn leads to a decrease in the electric po-
tential drop near the surface of the neutron star and suppression of
production of secondary particles. Because of the relation between
the pulsar extinction line and χ , the average inclination angles of the
observed populations can decrease as the dynamical age increases.
A detailed analysis carried out by Beskin, Gurevich & Istomin
(1984) and Beskin & Eliseeva (2005), based on a kinetic equation
describing the distribution of pulsars, provided quantitative proof
of this.

Recently, by analysing 45 yr of observational data for the Crab
pulsar, Lyne et al. (2013) found that the separation between the
main pulse and interpulse increases at the rate of 0.6◦ per century
(implying a similar growth of χ ). Even though this supports the
counter-alignment model, as was recently shown by Arzamasskiy,
Philippov & Tchekhovskoy (2015) and Zanazzi & Lai (2015), the
data can be explained with an alignment model as well, if precession
with a characteristic time-scale of ∼100 yr is considered.

Thus, one can conclude that at present there is no common point
of view for the evolution of the inclination angle χ of radio pul-
sars. On the other hand, it is quite clear that the inclination angle
χ is a key hidden parameter and it is impossible to develop a
consistent theory of radio pulsar evolution without taking it into
account.
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Figure 1. Left: Spatial distribution of radio pulsars N obs(dobs < d). The upper (blue) curve corresponds to the the main population of pulsars with
luminosity Lrad < 400 mJy kpc2 measured in the 400-MHz waveband. The lower (red) curve corresponds to the brightest pulsars with radio luminosity
Lrad > 400 mJy kpc2. The brightest pulsars have distribution function N obs ∝ d2, consistent with homogeneously distributed pulsars in the Galactic disc.
However, the main population of pulsars follows a different power law N obs ∝ d1.4, which we explain by considering the luminosity distribution function
on the right-hand panel. Right: Luminosity distribution function in the 400-MHz waveband N obs(Lobs > Lrad). At small luminosities, it has an approximate
power-law behaviour N obs ∝ L−0.3

rad , which allows us to explain the behaviour of the pulsar distribution over distances via equation (5).

The aim of this paper is to resolve the alignment/counter-
alignment problem by analysing the statistical properties of in-
terpulse pulsars, as the number of such pulsars (both for χ ∼ 0◦

and χ ∼ 90◦) mainly depends upon the evolution of the inclination
angle.

The paper is organized as follows. Section 2 is an analysis of the
observational data, which gives us necessary information about the
birth distribution of radio pulsars as well as the visibility function.
Here we also give the full list of interpulse pulsars. In Section 3,
we discuss two main evolution theories predicting the evolution
of alignment and counter-alignment. In Section 4, we describe the
details of our population synthesis based on a kinetic equation ap-
proach. Finally in Section 5, the main results of our consideration
are formulated.

2 R E L E VA N T O B S E RVATI O N S

In this section, we gather observational constraints on the pulsar
distribution function. Throughout the paper, we use the follow-
ing notation. We refer to the real distribution function (e.g. the
distribution function of all pulsars including those which are not
observed) over parameter f as N(f). The observed distribution func-
tion is different from the real one due to several selection effects.
We refer to this function as Nobs(f). When describing observations,
we often make use of the integrated observed distribution function
N obs(f ) ≡ ∫ f

Nobs(f ′) df ′.

2.1 Spatial distribution

To start with, we need to make some preliminary remarks concern-
ing the general properties of the radio pulsar statistical distribution.
It helps us to determine both the visibility function Vvis(P, χ ) as well
as the birth distribution Q(P, χ ) of radio pulsars. In this section, we
analyse the spatial distribution of radio pulsars in the Galactic disc.

Fig. 1 (left-hand panel) shows the observed spatial distribution
function of radio pulsars. We divide all pulsars into two groups: the
main population (blue, upper curve), which have radio luminosities
Lrad < 400 mJy kpc2 in the 400-MHz waveband, and the brightest

ones, which have Lrad > 400 mJy kpc2 (red, lower curve).1 Only
pulsars with known d and Lrad are taken into account.

As one can see, the brightest sources show a reasonable integral
distribution N obs(d) = 2π

∫ d

0 N (d ′)d ′ dd ′:

N obs
bright(d) ∝ d 2.0 (1)

in line with a homogeneous distribution of neutron stars within the
Galactic disc. On the other hand, the main population demonstrates
a conspicuous deviation:

N obs
main(d) ∝ d 1.4. (2)

This disagreement can be easily explained if we include the lu-
minosity visibility function V vis

lum, implying that the receiver with
sensitivity S cannot detect distant radio sources with Lrad < 4πSd2.
Indeed, as shown in Fig. 1 (right-hand panel), the visible integral ra-
dio luminosity distribution of radio pulsars with Lrad < 400 mJy kpc2

has a power-law dependence at small luminosities:

N obs(Lrad) ∝ L−0.3
rad , (3)

corresponding to a differential distribution:

Nobs(Lrad) ∝ L−1.3
rad . (4)

By providing a theoretical prediction for the spatial distribution
function:

N obs
th (d) = 2π

∫ d

0
ldl

∫ ∞

4πSl2
Nobs(Lrad) dLrad ∝ d1.4, (5)

we obtain a nice agreement with the observed distribution (2).
Thus, one can conclude that the visible spatial distribution of

radio pulsars is compatible with their homogeneous distribution
within the Galactic disc. For this reason, below we do not include
possible correlations connecting pulsar velocities, their z distribu-
tion in the Galactic disc, etc.

1 Here we use the ATNF pulsar catalogue (http://www.atnf.csiro.au/
people/pulsar/psrcat/, Manchester et al. 2005).

MNRAS 466, 2325–2336 (2017)

http://www.atnf.csiro.au/people/pulsar/psrcat/
http://www.atnf.csiro.au/people/pulsar/psrcat/


On the statistics of interpulse radio pulsars 2327

Figure 2. Observed integrated window width distribution N obs(Wr ) ∝
(Wr )−2.0±0.2 determined from statistics of the mean profile width Wr =
W obs

r P 1/2 (taken from the ATNF pulsar catalogue at 50 per cent intensity
level). It has an approximate power-law dependence for small inclination
angles (large window widths) with index −2, implying that Nobs(χ ) ∝ χ at
small angles χ .

2.2 Angular distribution

Further, let us try to evaluate the dependence of the distribution of
radio pulsars on the inclination angle χ . Unfortunately, as of today,
the determination of angle χ by analysing the swing of the linear
polarization position angle (Tauris & Manchester 1998; Maciesiak,
Gil & Ribeiro 2011; Malov & Nikitina 2013) has some uncertainties,
so different authors give different values of the inclination angle.
Moreover, the number of pulsars with well-determined inclination
angles χ is still rather low (approximately 100–200), thus preventing
us from discussing in detail their statistical properties.

For this reason, herein we use the approach proposed by Rankin
(1990) and Maciesiak, Gil & Melikidze (2012), which allows us
to evaluate the inclination angle for an individual pulsar from the
observed width of its mean profile W obs

r . Indeed, if W0 is an intrinsic
width of its directivity pattern, then the observed width for χ > W0

will be equal to

W obs
r = W0

sin χ
. (6)

As was found by Rankin (1990, 1993) and Maciesiak et al. (2012),
there are different values of W0 for the conal and core components
of emission. In this paper, we mainly use the value of W0 corre-
sponding to the conal component (as was also used in Weltevrede
& Johnston 2008):

W0 = 5.4◦
√

P
. (7)

Here, factor P−1/2 (where P is in seconds) corresponds to the clear
period dependence upon open magnetic field lines, which just deter-
mines the diagram width. As a result, relations (6) and (7) allow us
to evaluate the angular distribution of radio pulsars on much richer
statistics.

As is shown in Fig. 2, the observed window width distribution
N obs = ∫

N (Wr ) dWr for Wr = W obs
r P 1/2 < 35◦ features a power-

law dependence corresponding to differential distribution

Nobs(Wr ) ∝ (Wr )−3.0. (8)

As

Nobs(χ ) = Nobs(Wr )
dWr

dχ
, (9)

one can conclude that the observed angular distribution Nobs(χ ) at
small angles is proportional to χ :

Nobs(χ ) ∝ χ, (10)

which is in good agreement with observations (Tauris &
Manchester 1998; Maciesiak et al. 2012).

For χ > W0, the beaming visibility function V vis
beam (which takes

into account that the observer must be located within the directivity
pattern of the radio beam) can be written as V vis

beam = sin χW obs
r . Ac-

cordingly, if one can put Nobs(χ ) = V vis
beam(χ )N (χ ), the real distri-

bution function N(χ ) for small angles χ is approximately constant:

N (χ ) ≈ const (small angles). (11)

Thus, we conclude that when analysing the observed distribution
of radio pulsars, it is necessary to involve the beaming visibility
function V vis

beam, which in the general case can be approximately
formulated as (see a more accurate definition in Section 2.3):

V vis
beam =

⎧⎨
⎩

sin χW0, χ > W0,

W 2
0 , χ < W0.

(12)

It is interesting that the break for Wr > 35◦ (see Fig. 2) just corre-
sponds to inclination angles χ < W0 when the lower expression in
(12) is to be used.

2.3 Visibility function

The observed distribution function Nobs of radio pulsars deviates
from the real distribution function N. That difference comes from
two main effects.

The first is because we cannot observe distant faint sources. As
we show in Section 2.1, the observed spatial distribution of radio
pulsars agrees with a homogeneous distribution. Thus, if L(P, χ , B)
is the pulsar luminosity and S is the receiver sensitivity (radiation
is assumed to be isotropic and the anisotropy of the radiation can
be accounted for by properly renormalizing function L), one can
calculate the impact on the distribution function due to the limited
sensitivity:

Nobs =
∫ Rmax

0
2πl dl N�

[
S − L/4πl2

]

= L(P , χ,B)

4S
N (P , χ,B), (13)

where �[x] is the Heaviside function and Rmax is the characteristic
radius of the Galactic disc. As most of the pulsars are observed far
from the edge of the Galactic disc, we assume Rmax → ∞. One can
see that the observed distribution of pulsars is proportional to their
intrinsic luminosity. Interestingly, the distribution function does not
depend on receiver sensitivity (assuming that it is constant for all
pulsars), as this will disappear after normalization.

Unfortunately, the function L(P, χ , B) is poorly constrained, as
the pulsar radio luminosity weakly depends on observed parameters
P and Ṗ . A recent review by Bagchi (2013) contains the radio
luminosity of most of the proposed models. The dependence of
luminosity L on P and Ṗ is usually expressed as

L ∝ P α1 Ṗ α2 (14)

with parameters α1 and α2 used to fit the data. This expression,
although widely used, is only observationally motivated. Up to now,
there has been no physically motivated model describing pulsar
luminosity in terms of the intrinsic parameters P, χ and B. Early
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studies (e.g. Vivekanand & Narayan 1981) tried to find optimal pairs
(α1, α2) by fitting the observed values of luminosities. Such studies
give values (α1, α2) ∼ (−0.8, 0.4). Later studies (e.g. Faucher-
Giguère & Kaspi 2006; Bates et al. 2014) take into account selection
effects and include (α1, α2) as a part of the population synthesis
model. Although in principle it should give more accurate values, it
introduces two additional free parameters and makes the synthesis
more uncertain. These studies suggest values (α1, α2) ∼ (−1.5, 0.5).

On the other hand, there are only a few theoretical studies on pul-
sar radio luminosities. For example, the counter-alignment model
(Beskin et al. 1993) predicts

L(P , χ,B) ∝ P −0.8±0.2 cos1/2 χ, (15)

while for the alignment model there is no such prediction. Due to
such poor constraints on the luminosity function, in the majority of
the paper, we use a simplified version:

L(P , χ,B) = L(P ) ∝ P −1, (16)

implying that we can rewrite the distribution function as

Nobs = V vis
lum(P )N ∝ P −1N, (17)

where

V vis
lum(P ) ∝ P −1. (18)

This simplification allows us to express the results in a compact
form. However, our analysis is general and can be easily modified
for an arbitrary visibility function. We discuss the influence of the
luminosity function on pulsar statistics as well as the dependence
of L on the inclination angle and magnetic field in Section 4.5.

Another important effect is the beaming of the radio emission.
If a pulsar has an inclination angle χ and the angle between its
rotational axis and the direction to the observer is ξ , the pulsar can
be seen only if

|χ − ξ | < W0, (19)

where both angles should lie between 0◦ and 90◦. It is natural to
assume the direction to the observer is randomly distributed, which
implies N(ξ ) = sin ξ . Then we can determine the beaming visibility
function from

V vis
beam =

∫ ξmax

ξmin

sin ξdξ, (20)

where ξmin = max (0, χ − W0) and ξmax = min (π/2, χ + W0). This
is a general expression, and in the limit of small W0, it is consistent
with expression (12).

It is necessary to mention that one should be careful when using
expression (7). This expression was obtained from observations of
orthogonal radio pulsars (e.g. Rankin 1990), for which inclination
angles are known. The same expression cannot be reliably used for
arbitrary angles. As the coefficient in (7) implies the radio emission
is from the very surface of the neutron star, one can expect it to be
larger for arbitrary inclined pulsars.

In addition, the radiation visibility function V vis
lum has to take into

account the death line, which strongly depends upon the inclination
angle (see Beskin, Istomin & Philippov 2013 for more details).
Indeed, as was already mentioned in the introduction, for given
values of pulsar period P and magnetic field B, the production of
particles is suppressed at angles χ close to 90◦, where the magnetic
dipole moment is nearly orthogonal to the axis of rotation. This
in turn leads to a decrease in the electric potential drop near the
surface of the neutron star and to suppression of the production of
secondary particles. For example, within a Ruderman & Sutherland

Figure 3. Period–inclination angle diagram. Regions for which it is possi-
ble to observe interpulse emission are shaded in blue for double-pole (DP)
interpulses, condition (24), and red for single-pole (SP) interpulses, condi-
tion (26). Black lines show the pulsar death line (21) for a 1012 G magnetic
field (dashed line) as well as for a Crab-like pulsar with B12 = 3.8. The green
dot–dashed line shows an example of an evolution curve according to the
BGI model, (50) and (51), which is a straight line. The orange dotted line
represents the MHD evolution curve according to (44) and (45). The incli-
nation angle of a BGI pulsar increases with time, and it inevitably intersects
the death line, leading to a suppression of the number of DP interpulses.

(1975) type model, one can write the following condition for pair
creation (Beskin et al. 1993):

cos α > P 15/7B
−8/7
12 , (21)

where B12 = B/(1012 G) and period P is in seconds. Therefore,
neutron stars above and to the right of the extinction lines in Fig. 3
cannot be considered as radio pulsars. As will be discussed below,
the death line has to be taken into account for orthogonal interpulse
pulsars.

2.4 Period distribution

Finally, let us consider the statistical distribution of the period P,
which helps us to evaluate the birth function QP(P). As is shown
on Fig. 4 (left-hand panel), the period distribution function Nobs(P)
contains millisecond branch and normal radio pulsars with mean
period P ∼ 1 s. As the evolution of millisecond pulsars differs
essentially from the evolution of ordinary pulsars (see, e.g., Lyne
& Graham-Smith 1998), in what follows we consider the pulsars
with P > 0.03 s only. At first glance, the distribution of ordinary
pulsars is like a log-normal one, as is generally assumed for the birth
function (Popov & Prokhorov 2007; Gullón et al. 2014). However,
as is shown in Fig. 4 (right-hand panel), in reality, for small P, the
distribution function clearly is a power law:

Nobs(P ) ∝ P 0.5 (22)

until P ∼ 0.5 s. In what follows, we consider only the pulsars
with 0.03 s < P < 0.5 s, and assume (22) as their observational
distribution function.

Using now the total visibility functions (12) and (18), one can
conclude that V vis = V vis

lumV vis
beam ∝ P −1.5. Hence, the real differential

distribution function N(P) for small periods P has the form

N (P ) ∝ P 2. (23)

This power law for small periods is enough for us, as the interpulse
pulsars have rather small periods P ∼ 0.1–0.5 s as well (see red
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Figure 4. Left: Period distribution function for all pulsars. The bump to the left corresponds to millisecond pulsars, and to the right of it are normal pulsars. In
this paper, we consider only pulsars between two vertical lines that have periods 0.03 s ≤ P ≤ 0.5 s. In this period range, the period distribution is approximately
a power law Nobs ∝ P0.5. Right: Integral period distribution function N obs(P obs < P ) of normal pulsars. The distribution function is a power law until P ∼ 0.5 s.
Red dots show the locations of pulsars with interpulse emission.

points in Fig. 4). For the same reason, we are not going to take
into account the evolution of the magnetic field, as the time-scale
of its evolution is larger than the dynamical age of ordinary pulsars
τD ≈ P/2Ṗ .

2.5 Interpulse pulsars

2.5.1 Single- and double-pole interpulse pulsars

As was already mentioned, interpulse pulsars can provide an insight
on the evolution of radio pulsars because they can provide additional
information about the inclination angle χ . Indeed, as is well known
(Manchester & Taylor 1977; Lyne & Graham-Smith 1998), the
interpulse appears when we observe either two opposite poles (a
double-pole or DP pulsar) or the same pole twice (a single-pole or
SP pulsar); in the latter case, the two peaks correspond to the double
intersection of the hollow-cone directivity pattern. For the DP case,
the inclination angle χ is close to 90◦, while for a SP pulsar, this
angle is close to 0◦.

It is necessary to underline that sometimes it is rather difficult
to make a clear distinction between SP and DP interpulse pulsars.
The determination of the inclination angle from polarization char-
acteristics is kind of blurred, so some additional arguments must
be used. For example, one can suppose that for SP pulsars, the
main pulse/interpulse separation is not equal to 180◦ and is fre-
quency dependent, and there is non-zero radio emission between
pulses. Accordingly, the angular separation of the two components
for DP interpulse pulsars is close to 180◦ and does not depend on
the frequency, and there is no radio emission between them.

2.5.2 Interpulse statistics

There are several catalogues of interpulse pulsars. The most full ones
were made by Maciesiak et al. (2011) and by Malov & Nikitina
(2013). We collect such pulsars in Table 1, which includes the
pulsar names, their periods and period derivatives P and Ṗ , inter-
pulse/mean pulse intensity ratio, and angular separation between
peaks. In addition, we show the SP/DP classification from
Maciesiak et al. (2011) and Malov & Nikitina (2013). As one can
see, there is some disagreement in their interpretation resulting from
the different approaches in determining the inclination angle from

polarimetric properties. In this work, we do not aim at resolving
this disagreement.

It is necessary to stress that one of the main features of inter-
pulse pulsars is their rather small periods P compared to the total
population, as presented on Fig. 4. Accordingly, their dynamical
ages τD ≈ P/2Ṗ are much less than those of most radio pulsars
(∼1–10 Myr). Besides, as is shown in Table 2, the number of in-
terpulse pulsars in the period range 0.03 s < P < 0.5 s is much
larger than outside this range P > 0.5 s. Thus, by considering
this period range and using the distribution function of all pulsars
Nobs ∝ P0.5, we can describe most of the interpulse pulsars with good
accuracy.

2.5.3 Visibility function

For interpulse pulsars, it is necessary to make a correction to
the beaming visibility function. For almost orthogonal DP inter-
pulses, the condition to see two oppositely directed poles has the
form

π − χ − ξ < W0, (24)

which means that the visibility function

V vis,DP
beam =

∫ π/2

ξDP
min

sin ξdξ, ξDP
min = min(π/2, π − W0 − χ ). (25)

For SP interpulses, the condition to see the same pole twice is
(Weltevrede & Johnston 2008)

χ + ξ < W0, (26)

implying the visibility function is

V vis,SP
beam =

∫ ξSP
max

0
sin ξdξ, ξSP

max = max(0, W0 − χ ). (27)

However, equation (26) underestimates the fraction of SP inter-
pulses. Equation (26) implies that the observer can see the emission
region over the whole rotation period. However, given that the an-
gular separation between the main pulse and the interpulse for SP
interpulses is often less than 180◦ (see Table 2), we get the following
necessary condition for an SP interpulse:

ξ 2 + χ2 − 2ξχ cos η ≤ W 2
0 , (28)
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Table 1. All known interpulse pulsars. [1] from Maciesiak et al. (2011) and
[2] from Malov & Nikitina (2013). There is significant disagreement be-
tween these studies. We do not aim to resolve this disagreement. Instead, we
treat the discrepancy in the classification as the uncertainty in observational
constraints (see Table 2).

Name P Ṗ IP/MP Sep. [1]/[2]
J [s] 10−15 ratio [◦]

0534+2200 0.033 423 0.6 145 −/−
0627+0706 0.476 29.9 0.2 180 DP/DP
0826+2637 0.53 1.7 0.005 180 DP/−
0828−3417 1.85 1.0 0.1 180 SP/−
0831−4406 0.312 1.3 0.05 234 SP/SP
0834−4159 0.121 4.4 0.25 171 DP/SP
0842−4851 0.644 9.5 0.14 180 DP/DP
0905−5127 0.346 24.9 0.059 175 DP/−
0908−4913 0.107 15.2 0.24 176 DP/DP
0953+0755 0.253 0.2 0.012 210 SP/SP
1057−5226 0.197 5.8 0.5 205 DP/SP
1107−5907 0.253 0.09 0.2 191 SP/DP
1126−6054 0.203 0.03 0.1 174 DP/DP
1244−6531 1.547 7.2 0.3 145 DP/SP
1302−6350 0.047 2.28 0.75 145 SP/−
1413−6307 0.395 7.434 0.04 170 DP/DP
1424−6438 1.024 0.24 0.12 223 SP/SP
1549−4848 0.288 14.1 0.03 180 DP/DP
1611−5209 0.182 5.2 0.1 177 DP/−
1613−5234 0.655 6.6 0.28 175 DP/−
1627−4706 0.141 1.7 0.13 171 DP/SP
1637−4553 0.119 3.2 0.1 173 DP/DP
1637−4450 0.253 0.58 0.26 256 SP/SP
1705−1906 0.299 4.1 0.15 180 DP/DP
1713−3844 1.600 177.4 0.25 181 DP/−
1722−3712 0.236 10.9 0.15 180 DP/DP
1737−3555 0.398 6.12 0.04 180 DP/SP
1739−2903 0.323 7.9 0.4 180 DP/DP
1806−1920 0.880 0.017 1.0 136 SP/SP
1808−1726 0.241 0.012 0.5 223 SP/SP
1825−0935 0.769 52.3 0.05 185 −/SP
1828−1101 0.072 14.8 0.3 180 DP/−
1842+0358 0.233 0.81 0.23 175 DP/−
1843−0702 0.192 2.1 0.44 180 DP/−
1849+0409 0.761 21.6 0.5 181 DP/−
1851+0418 0.285 1.1 0.2 200 SP/SP
1852−0118 0.452 1.8 0.4 144 SP/SP
1903+0925 0.357 36.9 0.19 240 SP/SP
1913+0832 0.134 4.6 0.6 180 DP/−
1915+1410 0.297 0.05 0.21 186 DP/−
1932+1059 0.227 1.2 0.018 170 DP/SP
1946+1805 0.441 0.02 0.005 175 SP/SP
2032+4127 0.143 20.1 0.18 195 DP/SP
2047+5029 0.446 4.2 0.6 175 DP/−

Table 2. Number of interpulse pulsars. The lower values correspond to
a certain classification (the same determination in [1] and [2]) with high
enough interpulse-main pulse intensity ratio IP/MP >0.1.

0.03/0.5 s >0.5 s

NSP, observed 4/10 2/3
NDP, observed 10/24 3/5

Figure 5. SP interpulse selection criterion. The orange circle represents the
boundary of the emission region. In the reference frame rotating with the
star, the blue circle corresponds to the trajectory of the line of sight. Since
for SP interpulses all angles ξ , χ and W0 must be small, we can assume that
all circles are in the same plane and get the condition (28) for the visible
fraction of a period (red) to be larger than 2η.

where η represents the fraction of the period during which the
observer can see the emission region (see Fig. 5 for clarification). If
η = ηmax = 180◦, equation (28) gives the same constraint as equa-
tion (26). However, from Table 1, one can see that the separation
between the main pulse and the interpulse for SP pulsars can be as
low as 136◦, implying ηmin = 68◦. In what follows, we estimate the
number of SP interpulses for both ηmin and ηmax, which gives us
upper and lower boundaries for interpulse fractions.

It is worth noting that the conditions (27) and (25) do not depend
on whether the emission comes from the core or conal component.
The geometry of the emission region is parametrized by a single
parameter W0. By changing this parameter, one can consider the
core and conal components separately.

3 E VO L U T I O N T H E O R I E S

3.1 Current losses

As was mentioned above, one of the ways to understand pulsar
braking mechanisms is to analyse the evolution of the inclination
angle. In the present paper, we consider two magnetospheric the-
ories, both predicting simple analytical expressions for the time
evolution of period P and inclination angle χ . The first one is
the numerical force-free/magnetohydrodynamics (MHD) model
(Spitkovsky 2006; Philippov et al. 2014), which predicts evolu-
tion towards 0◦. The other one is related to the quasi-analytical
model elaborated by Beskin et al. (1984, 1993) and predicts counter-
alignment. In both cases, we do not consider the evolution of the
magnetic field since most interpulse pulsars have dynamical ages
smaller than the characteristic time-scales of magnetic field
evolution.

The braking of the neutron star rotation results from the impact
of the torque K due to longitudinal currents j‖ circulating in the
pulsar magnetosphere; for zero longitudinal current, the magneto-
dipole radiation of a star is fully screened by radiation from the
pulsar magnetosphere (Beskin, Gurevich & Istomin 1993; Mestel,
Panagi & Shibata 1999). General expressions connecting the time
evolution of the angular velocity � and inclination angle χ can be
parametrized as (Beskin et al. 1993; Philippov et al. 2014)

Ir �̇ = K‖ cos χ + K⊥ sin χ (29)
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and

Ir� χ̇ = K⊥ cos χ − K‖ sin χ, (30)

where Ir ∝ MR2 is the momentum of inertia of the neutron star. We
introduce two components of the torque K, parallel and perpendic-
ular to the magnetic dipole m.

It is convenient to describe these values using the dimensionless
current i ≈ j‖/jGJ by separating it into a symmetric part is (which has
the same sign in the northern and southern parts of the polar cap)
and an antisymmetric part ia (which reverses sign on the polar cap).
Here and below, we apply normalization to the local Goldreich–
Julian current density, jGJ = |� · B|/2π (with scalar product). For
a dipole magnetic field and small angles θ − χ ∼ (�R/c)1/2, we
have

jGJ(rm, ϕm) ≈ �B0

2π

(
cos χ + 3

2

rm sin ϕm

R
sin χ

)
. (31)

Here B0 is the magnetic field at the neutron star magnetic pole, R is
the neutron star radius, and rm and ϕm are the polar coordinates at
the magnetic polar cap. As a result, one can write

is = iA
s cos χ (32)

and

ia = iA
a sin χ, (33)

where the amplitude values

iA
s = 2(I+ + I−)

�B0R
2
0 cos χ

(34)

and

iA
a = πR(I+ − I−)

�B0R
3
0 sin χ

(35)

can be determined by the currents through the northern and southern
parts of the polar cap:

I+ =
∫ R0

0

∫ π

0
j‖rmdrmdϕm (36)

and

I− =
∫ R0

0

∫ 2π

π

j‖rmdrmdϕm. (37)

Here R0 ≈ (�R/c)1/2R is the polar cap radius. For j‖ = jGJ, we have
iA
s = iA

a = 1.
As one can easily check, K‖ ∝ is and K⊥ ∝ ia. In particular, the

direct action of the Ampère force on the star by surface currents
(which are close to the longitudinal electric currents circulating in
the pulsar magnetosphere) can be written as (Beskin et al. 1984)

K sur
‖ = −c‖

B2
0 �3R6

c3
is (38)

and

K sur
⊥ = −c⊥

B2
0 �3R6

c3

(
�R

c

)
ia. (39)

Here the coefficients c‖ and c⊥ are factors of order unity that depend
on the profile of the longitudinal current and polar cap form. As we
see, for a local Goldreich–Julian current is ≈ ia ≈ 1, relations (38)
and (39) imply that

K sur
⊥ ≈

(
�R

c

)
K sur

‖ , (40)

so that K sur
⊥ � K sur

‖ . Below we also assume (as was not done up to
now) that the additional contribution for K⊥ can give the magneto-
sphere itself, more precisely, the mismatch between the magneto-
dipole radiation from the magnetized star and radiation from the
magnetosphere (which exactly compensate each other for a zero
longitudinal current). Here we write down K

mag
⊥ in general form

as

K
mag
⊥ = −A

B2
0 �3R6

c3
ia. (41)

We will try to evaluate the dimensionless constant A later from the
results of numerical simulations.

Introducing now amplitude values KA
‖ = K‖(0) and KA

⊥ =
K⊥(π/2), we finally obtain

Ir�̇ = KA
‖ + (KA

⊥ − KA
‖ ) sin2 χ (42)

and

Ir�χ̇ = (KA
⊥ − KA

‖ ) sin χ cos χ. (43)

As both expressions contain the same factor (KA
⊥ − KA

‖ ), one can
conclude that the sign of χ̇ is associated with a χ dependence of the
energy losses (Beskin et al. 2013). In other words, the inclination
angle χ evolves towards 90◦ (counter-alignment) if the total energy
losses decrease with increasing inclination angle, and towards 0◦

(alignment) if they increase with the inclination angle.

3.2 Two braking models

3.2.1 Force-free/MHD model (alignment)

According to the force-free/MHD model based on recent numer-
ical simulations (Philippov et al. 2014), rotation braking and the
evolution of the inclination angle can be approximately defined as

�̇ ≈ −1

4

B2
0 R6�3

Irc3
(1 + sin2 χ ) (44)

and

χ̇ ≈ −1

4

B2
0 R6�2

Irc3
sin χ cos χ. (45)

Accordingly, the total magnetospheric losses are

WMHD
tot ≈ 1

4

B2
0 �4R6

c3
(1 + sin2 χ ), (46)

i.e. they increase with the inclination angle χ . The evolution law,
(44) and (45), has an integral of motion

IMHD = P sin χ

cos2 χ
, (47)

which will be used in what follows. As we see, in this model the
inclination angle χ evolves to 0◦.

It is necessary to point out that, according to equation (40), this
case can be realized either for a strong enough anti-symmetric
current iA

a ∼ (�R/c)−1, or for a large enough contribution of the
magnetospheric torque (41). However, as one can easily find by
analysing the analytical asymptotic behaviour of quasi-radial MHD
flows (see, e.g. Tchekhovskoy, Philippov & Spitkovsky 2016),
the MHD solution (46) corresponds to insufficient value iA

a ∼
(�R/c)−1/2. Remembering that the dimensionless current ia was
normalized to the local Goldreich–Julian current j loc

GJ , we see that
the total current circulating in the magnetosphere of the orthogonal
rotator is like the axisymmetric case (Bai & Spitkovsky 2010). This
is not surprising, because just this total electric current is necessary
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for the toroidal magnetic field on the light cylinder to coincide with
the electric one. This antisymmetric current for ordinary pulsars
with P ∼ 1 s is 102 times larger than the local Goldreich–Julian cur-
rent. The possibility for the longitudinal current to be much larger
than the Goldreich–Julian one was recently discussed by Timokhin
& Arons (2013).

Thus, one can conclude that to explain MHD energy losses, it is
necessary to suppose the existence of magnetospheric losses with

A ≈ 2

(
�R

c

)1/2

. (48)

Resulting from large enough anti-symmetric currents ia � 1, this
gives the necessary contribution to total energy losses.

3.2.2 BGI model (counter-alignment)

The analytical theory of pulsar magnetosphere formulated by
Beskin et al. (1984, 1993) is based on three key assumptions:

(i) The longitudinal current js circulating in the pulsar magneto-
sphere does not exceed the local one jGJ ≈ �B0cos χ/2π . Its value
is determined by the potential drop in the inner gap V:

iA
s ≈ 1

2

(
V

Vmax

)1/2

, (49)

where Vmax = (�R/c)2RB0 is the maximum potential drop.
(ii) The potential drop V is determined by the Ruderman &

Sutherland (1975) model.
(iii) The magnetospheric contribution K

mag
⊥ (41) was neglected.

As now becomes clear from (41) and (48), this assumption is indeed
correct for a small anti-symmetric longitudinal current ia ∼ 1, which
was also postulated.

As a result, this model provides the following evolution law for
cos χ > (�R/c)−1:

Ṗ−15 = QBGI
B2

12

P
cos2 χ (50)

and

χ̇ = QBGI
B2

12

P
sin χ cos χ, (51)

where again B12 = B0/(1012 G) and Ṗ−15 = Ṗ /10−15 are the nor-
malized magnetic field and the period derivative, respectively, and P
is given in seconds. The main dimensionless parameter of this theory
QBGI ≈ j/jGJ, for QBGI < 1, can be defined as (Beskin et al. 1984)

QBGI = P 15/14B
−4/7
12 cos2d−2 χ, (52)

where d ≈ 0.75. For QBGI > 1, one has to put QBGI = 1.
As a result, for χ �= 90◦, the Euler equation predicts conservation

of the following invariant:

IBGI = P

sin χ
. (53)

Thus, within this model, the polar angle χ will increase with time.
Accordingly, the total energy losses decrease with an increase of
the inclination angle χ :

W
(BGI)
tot ≈ iA

s

B2
0 �4R6

c3
cos2 χ. (54)

Finally, for QBGI < 1, the radio luminosity L can be presented as
L = αWpart, where Wpart = Q2

BGIWtot is the particle energy flux and
α ∼ 10−6 is the transformation coefficient. This gives

LBGI ∝ P −0.8 cos1/2 χ. (55)

For cos χ ∼ 1, we return to the evaluation, such as equation (18).

4 PR E D I C T I O N S V E R S U S O B S E RVAT I O N S

4.1 General assumptions

4.1.1 Preliminary remarks

To clarify the mechanism of radio pulsar braking, we determine
the number of radio pulsars having such angles χ that they can be
observed as interpulse pulsars. As their period distribution depends
directly on their evolution, this gives us the possibility of recogniz-
ing the direction of the evolution of the inclination angle as well.
For this reason, we consider the pulsars with 0.03 s < P < 0.5 s for
two evolutionary scenarios, (44) and (45), and (50) and (51), using
the kinetic equation method. There are two important points to be
mentioned.

First, without regard for the smallness of the period P, for inter-
pulse pulsars, the death line will be considered for the orthogonal
case for the BGI model. As shown on Fig. 3, for inclination angles
χ close to 90◦, the death line on the P–sin χ diagram is located at
small enough periods P < 1 s. Moreover, in this case, the shape of
the region within the polar cap where most of the radio emission is
produced is not well understood.

Indeed, it is impossible to create pairs near the line where the
Goldreich–Julian charge density changes sign, preventing the lon-
gitudinal electric field from being large enough. As a result, the
geometrical visibility function V vis

beam cannot be determined with
sufficient accuracy.

On the other hand, numerical kinetic simulations of nearly MHD
magnetospheres (Philippov, Spitkovsky & Cerutti 2015) show abun-
dant pair production for large inclination angles. Therefore, for the
BGI model, we consider only SP interpulses for which the death
line cannot play an important role, while for the MHD model we
consider DP interpulses as well.

Secondly, we assume that in the pulsar birth function Q(P, χ , B,
ξ ), all arguments are independent of each other:

Q(P , χ,B, ξ ) = QP (P )Qχ (χ )QB (B) sin ξ. (56)

As we already stressed, evolution of the magnetic field is not im-
portant for short dynamical ages. This allows us to obtain an exact
solution of the kinetic equation with a period distribution that does
not depend on the magnetic field birth function.

4.1.2 Initial periods and inclination angles

As was already stressed, the visible distribution of radio pulsars
strongly depends on their initial periods P and inclination angles χ .
Repeated attempts have been made to determine the birth function
QP(P) (Lyne, Manchester & Taylor 1985; Popov & Turolla 2012),
but so far, this function remains unknown. The new point of our pa-
per is that we use here the direct observational scaling Nobs(P) ∝ P0.5

shown on Fig. 4. Being valid for short periods P < 0.5 s, this
distribution can describe interpulse pulsars with a high enough
precision.

For the birth function Qχ describing the distribution on initial in-
clination angles χ , we consider two possibilities, namely Qχ = sin χ

and Qχ = 2/π . The first corresponds to the random orientation
of the magnetic axis with respect to the rotational one, which is
more reasonable at first glance. However, as we will see, the obser-
vational evaluation of the real χ distribution N(χ ) (equation 11)
can correspond to the homogeneous distribution Qχ = 2/π as
well.
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4.1.3 Comparison with observations

To compare the predictions of evolutionary scenarios with observa-
tions, it is not sufficient to know the distribution function of radio
pulsars N(P, χ ) because it is necessary to consider the visibility
functions Vvis (see Section 2.1). In particular, the visible distribu-
tion of SP interpulse pulsars must be written as

Nobs(P ) =
∫ Wr (P )

0
dχ V vis(P , χ ) N (P , χ ). (57)

Relation (57) helps us to normalize the observed distribution func-
tion as well. We normalize the distribution function by the total
number of observed pulsars in the period range 0.03 s < P < 0.5 s:

Ntot =
∫ 0.5

0.03
dP

∫ π/2

0
dχV vis(P , χ ) N (P , χ ). (58)

Observationally, we know that Ntot = 796, and in what follows, we
use this number to normalize the distribution function.

4.2 Population synthesis: kinetic equation

In this section, we describe our approach using the kinetic equation

∂

∂P
(ṖN ) + ∂

∂χ
(χ̇N ) = Q (59)

to obtain the real distribution function N(P, χ ) of radio pulsars.
Here the values Ṗ (P , χ ) and χ̇(P , χ ) are to be taken from the given
model. Accordingly, Q(P, χ ) is the birth function depending both
on the inclination angle χ and initial period P. Here for simplicity,
we put Q(P, χ ) = QP(P)Qχ (χ ). Certainly, we also assumed that the
observable distribution is time-independent due to the very small
dynamical lifetime τD ≈ P/2Ṗ ∼ 10 Myr in comparison with the
Galactic age. Finally, we do not consider magnetic fields in this
section, and discuss their impact in Section 4.3.

Due to the existence of integrals of motion, the kinetic equation
can be easily solved. Then, adding the visibility functions V vis =
V vis

lumV vis
beam discussed in Section 2.3, one can determine the number

of observed pulsars and compare it with observations.
As a result, for the force-free/MHD model (44) and (45), the

kinetic equation has the form

∂

∂P

[
N

P
(1 + sin2 χ )

]
− ∂

∂χ

[
N

P 2
sin χ cos χ

]
= KQ, (60)

where K = Irc3/(π2B2R6). In what follows, we neglect this factor
as it disappears after normalization (see also Section 4.3). Using
now expression (47) for the integral of motion IMHD, we obtain a
solution that is valid for arbitrary QP and Qχ :

NMHD = P 2

cos3 χ

∫ π/2

χ

cos2 x

sin x
Qχ (x)QP

(
P

sin χ

cos2 χ

cos2 x

sin x

)
dx.

(61)

Note that one needs to normalize this solution according to (58).
Assuming N(P) ∝ P2 (equation 23), one can obtain the birth function
QP = const. As a result, for Qχ = 2/π , the solution has a simple
form:

NMHD(P , χ ) = − 2 log tan(χ/2) + 2 cos χ

cos3 χ
P 2. (62)

Accordingly, for Qχ = sin χ we have

NMHD(P , χ ) = π/2 − χ − sin χ cos χ

cos3 χ
P 2. (63)

Figure 6. Comparison of angular distribution functions N(χ ) for different
evolution models (equations 62, 63, 66 and 67). Models described with
dashed lines do not have a finite value in the limit of χ → 0, and, thus,
contradict the observations. On the other hand, models described with solid
lines agree with observations. This shows that the MHD and BGI models
require different birth function Qχ to be consistent with observations.

As for the BGI model (50) and (51), the kinetic equation has the
form:

∂

∂P

[
N cos2d χ

] + ∂

∂χ

[
N

P
sin χ cos2d−1 χ

]
= QP (P )Qχ (χ ).

(64)

Using again the integral of motion IBGI (equation 53), we obtain

NBGI(P , χ ) = P

sin2 χ cos2d−1 χ

∫ χ

0
Qχ (x)QP

(
P

sin x

sin χ

)
sin xdx,

(65)

which again should be properly normalized. As N(P) ∝ P2, one
can conclude that QP(p) is a linear function of p. As a result, for
homogeneous angular birth function Qχ = 2/π , the solution looks
like

NBGI(P , χ ) = χ − sin χ cos χ

sin3 χ cos2d−1 χ
P 2. (66)

Accordingly, applying the random angular birth function
Qχ = sin χ , we obtain

NBGI(P , χ ) = 2 + cos3 χ − 3 cos χ

sin3 χ cos2d−1 χ
P 2. (67)

We present angular distribution functions for different models
in Fig. 6. One can easily notice that for the MHD model with a
uniform angular birth function (blue dashed line), the number of
pulsars with small angles is very large, while for the BGI model
and a sinusoidal angular distribution function (red dashed line), the
fraction of pulsars with small angles is close to zero. However,
observationally one has N(χ ) ≈ const at small angles. This implies
that the models described with dashed lines in Fig. 6 are inaccurate.
On the other hand, models described with solid lines have a finite
limit at χ → 0, and, thus, agree with observations. One should also
remember that these distribution functions should be corrected with
the visibility function to obtain the observed distribution function.

4.3 Dependence on the magnetic fields

One can immediately see from equation (59) that

N ∝ Qξ (ξ )QB (B) B−2 (MHD) (68)
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and

N ∝ Qξ (ξ )QB (B) B−10/7 (BGI). (69)

The observed distribution function Nobs(P, χ ) does not depend on
the form of the birth function QB(B). To show that, we consider the
MHD case only, but the same conclusion remains true for the BGI
model as well since the only difference is in the power of B in the
denominator of equations (68) and (69). The observed distribution
function Nobs(P, χ ) is given by

Nobs(P , χ ) =
∫ ∞

0
dB

∫ π/2

0
dξVvis(P , χ,B, ξ )N (P , χ,B, ξ )

∝
∫ ∞

0
dBV vis

lum(P , χ,B)QB (B)/B2. (70)

Then, assuming V vis
lum ∝ Ṗ α2 ∝ B2α2 , we get Nobs ∝∫

dBB2α2−2QB (B). So, the dependence of the source func-
tion on the magnetic field gets factored out. The assumptions allow
us to find a solution that does not depend on the initial magnetic
fields.

Of course, the main assumption here is that the luminosity visi-
bility function has a specific form. This assumption is widely used
in the literature (Bagchi 2013), and is observationally motivated.
However, one needs to keep in mind that an observationally moti-
vated visibility function is effectively averaged over all angles and
magnetic fields. More careful analysis requires knowing the fraction
of total energy losses that goes into radio emission. Unfortunately,
an accurate model of radio emission has yet to be discovered. How-
ever, that magnetic fields get factored out will remain true for any
visibility function that has the form V = VP, χ , ξ VB, which allows for
a wide range of possible functions.

On the other hand, these considerations do not take into account
the pulsar death line. The death line depends on pulsar parameters
P, χ and B in a way that does not allow us to factor out the mag-
netic field birth function. While the death line is not important for
the alignment model (Gullón et al. 2014), it is very important for
the counter-alignment model (Beskin et al. 1993). The reason is
that it acts mostly on pulsars with large inclination angles. In the
MHD model, such pulsars are young and energetic and, thus, are
not affected by the death line. In the BGI model, the situation is
the opposite. This is the reason why we cannot consistently inves-
tigate DP interpulses in the BGI model within the approach under
consideration.

4.4 Number of interpulse pulsars

We are now in a position to calculate the fraction of pulsars that
have interpulse emission. Using solutions (62) and (63), and (66)
and (67), visibility functions (25) and (27), as well as normalization
(equation 58), we obtain the number of SP and DP interpulses for a
variety of models. The results are collected in Table 3.

For the MHD model, we mostly use Qχ = sin χ , which gives
an angular distribution function in agreement with observations.
For comparison, we also tried Qχ = 2/π for W0 = 5.8◦P−1/2. One
can see that because the solution (62) is divergent at small angles,
the number of SP interpulses becomes unreasonably large. The
number of DP interpulses is not so sensitive to Qχ , as was seen
from Fig. 6. We can, thus, conclude that observations of pulsars at
small inclination angles require a random birth function Qχ = sin χ .

For the BGI model, we use Qχ = 2/π , which also gives a
flat angular distribution function at small angles. A random birth

Table 3. Prediction of the number of interpulse pulsars for
the MHD and BGI models. For SP interpulses, we use crite-
rion (26) to obtain the lower limit, and relation (28) for the
upper limit. For DP interpulses, there is no such uncertainty.
For each model, we try window widths W0, corresponding
to the core and conal components of emission, as well as a
slightly larger value W0 = 7.0◦P−1/2. Unless mentioned in
the third column, we use Qχ = sin χ for the MHD model and
Qχ = 2/π for the BGI model. We can conclude that both
evolution models are able to reproduce the observations, al-
though they require different birth functions.

Single-pole interpulses (0.03 s ≤ P ≤ 0.5 s)
Observations 4/14
MHD 1/3 W0 = 2.45◦P−1/2

BGI 0.2/0.6

MHD 6/18 W0 = 5.8◦P−1/2

BGI 1/4

MHD 9/26 W0 = 7.0◦P−1/2

BGI 2/5

MHD 17/50 W0 = 10.0◦P−1/2

BGI 4/12

MHD 19/44 Qχ = 2/π

BGI 0.08/0.5 Qχ = sin χ

Double-pole interpulses (0.03 s ≤ P ≤ 0.5 s)

Observations 10/23
MHD 15 W0 = 2.45◦P−1/2

MHD 36 W0 = 5.8◦P−1/2

MHD 44 W0 = 7.0◦P−1/2

MHD 28 Qχ = 2/π

function Qχ = sin χ gives a diminishing distribution function N(χ )
and, thus, a very small number of SP interpulses.

In addition to different evolution models and different inclination
angle birth functions Qχ , we consider different window widths W0.
The value W0 = 2.45◦P−1/2 corresponds to the core component
of radio emission (Rankin 1990), while the value W0 = 5.8◦P−1/2

describes the conal component (Rankin 1993). The latter value is
not very well constrained due to the lack of good statistics, so we
use additional value W0 = 7.0◦P−1/2 to constrain better the number
of interpulses (note that this value does not contradict observations
of window widths).

For each window width, we calculate upper and lower limits on
the SP interpulse fraction using the definitions from Section 2.5.3.
As could easily be shown, the number of such pulsars depends
quadratically on the window width. For the MHD model, we get the
best agreement with observations for W0 = 5.8◦P−1/2 with much
worse agreement for other window widths. For the BGI model,
we obtain the best agreement for W0 = 7.0◦P−1/2, and reasonable
agreement for W0 = 5.8◦P−1/2.

Thus, we can conclude that both models are able to describe the
fraction of SP interpulses, and both of them require the use of a
visibility function for the conal component (with the BGI model
requiring a slightly larger window width).

Our analysis allows us to estimate the number of DP interpulses
only for the MHD model. As a result, we get a fraction of such in-
terpulses in good agreement with observations. We obtain the best
agreement for core component visibility function W0 = 2.45◦P−1/2.
This is not surprising: the fit for the core component of radio
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Table 4. Prediction of the number of interpulse pulsars for
different radio luminosity models. We use Qχ = sin χ for
the MHD model and Qχ = 2/π for BGI. One can see that
the number of interpulse pulsars depends significantly on
the luminosity model. On the other hand, the conclusions of
Section 4.4 remain true for all models.

Single-pole interpulses, W0 = 5.8◦P−1/2

Observations 4/14 (α1, α2)
MHD 1/6 (−1.5, 0.5)
MHD 0.5/3 (−3, 1)
MHD 4/13 (−0.8, 1/3)

BGI 3/9 (−1.5, 0.5)
BGI 5/15 (−3, 1)
BGI 2/7 (−0.8, 1/3)

Double-pole interpulses, W0 = 2.45◦P−1/2

MHD 18 (−1.5, 0.5)
MHD 21 (−3, 1)
MHD 16 (−0.8, 1/3)

Double-pole interpulses, W0 = 5.8◦P−1/2

Observations 10/23
MHD 44 (−1.5, 0.5)
MHD 51 (−3, 1)
MHD 40 (−0.8, 1/3)

emission (Rankin 1990; Maciesiak et al. 2012) comes from the
observations of DP interpulses (for which one can neglect factor
sin −1χ in the observed window width).

4.5 Dependence on radio luminosity model

Even though we presented a solution of the kinetic equation (59)
only for luminosity visibility function V vis

lum = P −1, the results could
be easily generalized for more sophisticated models. Indeed, any
luminosity function of the form L ∝ P α1 Ṗ α2 can be expressed as

L ∝ P κf lum
χ (χ )f lum

B (B) (71)

with model-dependent κ , f lum
χ and f lum

B . For example, the MHD
model (44) and (45) has κ = α1 − α2, f lum

χ = (1 + sin2 χ )α2

and f lum
B = B2α2 , while the BGI model (50) and (51) implies

κ = α1 + α2/14, f lum
χ = cos χ2dα2 and f lum

B = B10α2/7.
In Table 4, we present the results for the interpulse fraction for dif-

ferent luminosity models. We parametrize each model with power-
law indices α1 and α2. The most widely used model (see Section 2.3
for a discussion) is (α1, α2) ∼ (−1.5, 0.5), which corresponds to
a luminosity proportional to a potential drop over the polar cap.
For comparison, we also include the model with a constant fraction
of radio luminosity in the total pulsar losses L ∝ Ir��̇ ∝ P −3Ṗ .
Finally, we use (α1, α2) ∼ (−0.8, 1/3) to elaborate the analyti-
cal prediction (equation 55). Formally, we can use this luminosity
model only for BGI evolution theory. However, we include the
results for the MHD model for comparison as well.

We can conclude that the results depend significantly on the lu-
minosity model. However, the conclusions of Section 4.4 remain
true for all luminosity models. Again, the uncertainties in both ob-
servations and theory prevent us from making an exact evaluation
of interpulse numbers. We are able to make only an order of mag-
nitude estimate. We see that for such estimates, we have agreement
for all models. However, with the growing number of observations,

one will be required to have a good physically motivated luminosity
model to obtain better agreement with observations.

5 C O N C L U S I O N S A N D D I S C U S S I O N

Analysing now the results collected in Table 3, one can conclude
that both the MHD model with the homogeneous birth function
Qχ = 2/π (equation 62) as well as the BGI model for random
birth function Qχ = sin χ (equation 67) are in clear disagreement
with observations. The first model predicts too many SP interpulse
pulsars while the second one predicts too few. This result can be
easily explained.

One can approximately evaluate the number of SP interpulses as

N SP ∼ NtotW
2
0 (Pmed)N0

χ/〈Nχ (χ ) sin χ〉χ , (72)

where N0
χ is the characteristic value of the angular distribution

function near χ = 0, which we take to be Nχ [W0(Pmed)]. The de-
nominator 〈Nχ (χ )sin χ〉χ corresponds to the average value of the
angular distribution function of observed pulsars, which should be
of order unity, unless most of the pulsars have small angles (for ex-
ample, the MHD model with uniform angular birth function), and
Pmed is the characteristic value of the period, which we take to be
0.3 s.

For models in good agreement with observations (namely, the
MHD model with Qχ = sin χ and the BGI model with Qχ = 2/π ),
the estimate (72) gives

N SP
MHD ∼ 0.05Ntot, N SP

BGI ∼ 0.01Ntot. (73)

However, for the MHD model with Qχ = 2/π , the same estimate
givesN SP

MHD ∼ 0.1Ntot, which is too large. Similarly, the BGI model
with Qχ = sin χ predicts N SP

BGI ∼ 0.002Ntot, which is too small.
Unfortunately, the precision of our considerations does not allow

us to select the preferred model. On the other hand, our results put
several constraints on the models. In particular, by selecting the
model, one fixes the birth functions for the period range 0.03 s ≤ P
≤ 0.5 s:

(i) The MHD model requires a random angular distribution func-
tion Qχ = sin χ . At the same time, this model requires the period
birth function to be QP = P−κ − 1 ∝ const.

(ii) The BGI model requires a uniform angular distribution func-
tion Qχ = 2/π . At the same time, this model requires the period
birth function to be QP = P−κ ∝ P.

Here we assume the simplest luminosity model with κ = −1. For
both models, the initial period distribution is rather broad. Our
results are in good agreement with the results of Fuller et al. (2015),
who computed initial spin periods of neutron stars that were spun
up by internal gravity waves during core-collapse supernovae. On
the other hand, a stochastic spin-up of the core will inevitably lead
to a random orientation of the angular momentum of the neutron
star, and, thus, implies Qχ = sin χ , which is one of the requirements
of the MHD model.

In addition to predicting the number of interpulse pulsars, our
method allows us to determine the observed period distribution of
interpulses. For example, one can easily see from equations (27),
(25) and (57) that

Nobs,SP(P ) ∼ W 2
0 (P )Nobs(P ) ∝ P −1/2 (74)

and

Nobs,DP(P ) ∼ W0(P )Nobs(P ) ∝ const. (75)
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Of course, the current number of observed interpulses is too small
to compare their period distribution with our predictions. However,
with the growing number of observed interpulses, this will soon
become possible.

Finally, as one can see from Table 3, for SP interpulses, the
agreement with observations gets better with increasing window
width. For DP interpulses, the situation is the opposite. This implies
that the emission from low-inclination pulsars is dominated by the
conal component, while the emission from high-inclination pulsars
is mostly from the core component.

To summarize, one can conclude that the observational data agree
with both evolutionary scenarios. The alignment MHD model pre-
dicts a reasonable number of both SP and DP interpulse pulsars. For
the counter-alignment BGI model, the analytical kinetic approach
discussed above can give a suitable number for SP interpulse pulsars
only. To analyse DP interpulse pulsars, it is necessary to include:

(i) the death line depending on the magnetic field distribution of
neutron stars (see Fig. 3)

(ii) the uncertainty in the antisymmetric current iA
a , which de-

scribes the escape rate for an orthogonal rotator through the death
line

(iii) the inclination angle χ dependence of the radio luminosity
LBGI (equation 55) resulting in the diminishing of the radio for
orthogonal rotators.

We are going to consider this case in a separate paper.
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