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ABSTRACT
The effect of mass loading of the magnetohydrodynamic (MHD) flow in relativistic jets from
active galactic nuclei (AGNs) due to γ γ → e+e− conversion is considered analytically. We
argue that the effects of charge average separation due to specific initial pairs’ motion lead to
partial magnetic and electric field screening or enhancement. The effect of the field screening
has not been considered earlier. The pairs with the centre of mass moving faster or slower than
the bulk plasma flow create a surface charge and a current that either screen or enhance both
electric and magnetic fields in a pair creation domain. This impacts the bulk flow motion, which
either accelerates or decelerates. The pairs with the centre of mass moving with exactly the
drift velocity do not induce the field disturbance. In this case, the flow decelerates due to pure
mass loading. For these different cases, the Lorentz factor of the loaded outflow is calculated
as a function of loading pair number density. The effect may be important on sub-parsec to
parsec scales due to the conversion of TeV jet radiation on the soft infrared to the ultraviolet
external isotropic photon field. This leads to a jet outer shell acceleration. The conversion of
MeV jet radiation on larger scales may account for the flow deceleration due to pure mass
loading. The proposed mechanism may be a source of internal shocks and instabilities in the
pair creation region.

Key words: radiation mechanisms: non-thermal – galaxies: active – galaxies: jets – quasars:
general – radio continuum: galaxies.

1 IN T RO D U C T I O N

The recent Monitoring Of Jets in Active galactic nuclei with VLBA
Experiments (MOJAVE) analysis of kinetic properties of the ob-
served bright features of active galactic nuclei (AGNs) has shown
that jets demonstrate predominantly negative acceleration of the or-
der of �̇/� ∼ 10−3to10−2 yr−1 (Homan et al. 2015) at distances
20–100 pc from the jet cores. These are hard to explain within the
ideal magnetohydrodynamical (MHD) models. On the other hand,
on scales less than 10–20 pc the bright features tend to accelerate at
the same rate. In Paper I (Beskin & Chernoglazov 2016), we have
proposed that an accurate account for the drag force may explain
the observed plasma deceleration, the characteristic length scales
of deceleration being 100 pc. In this work, we put forward another
possible mechanism for both jet acceleration and deceleration, i.e.
the mass and charge loading due to two-photon pair creation.

The ideal MHD models of relativistic jets do not predict any
radiation. The cold plasma moves with exactly the drift velocity in
crossed electric and magnetic fields (Beskin 2009; Tchekhovskoy,
McKinney & Narayan 2009), not undergoing any acceleration that
may lead to radiation. Thus, in order to introduce the radiation site,
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one needs to create some particle energy disturbance – either by
internal shocks or by means of instabilities. The proposed effect in
this paper may account for such a site of radiation as well.

This paper follows a work where the radiation drag is considered
self-consistently as a mechanism for plasma deceleration of a jet.
Now we concentrate on charged pair loading. The mass loading
itself has been considered by Lyutikov (2003) with the result of
a flow acceleration as mass loading works effectively as a nozzle
for the monopole magnetic field line geometry. The result does not
depend on the charge of loaded particles in contrast with this paper.
The work by Derishev et al. (2003) proposed a mechanism that may
account for extremely efficient pair acceleration by switching the
neutral–charged state of particles. The series of papers by Stern &
Poutanen (2006, 2008) also explored the so-called photon breeding
mechanism, in which the γ γ pair conversion is followed by effi-
cient acceleration of pairs and consequent high-energy radiation of
photons (from where originates ‘breeding’). These works are very
close to what is done here since all of them also take advantage of
charged particle behaviour in an electromagnetic field of a jet.

In this paper we consider the effects of charged pair loading on
the relativistic jet dynamics. For the two-photon γ γ → e+e− pair
conversion, we consider the dynamics of pairs in the ideal MHD
bulk flow of cold jet plasma. In contrast with the latter, created pairs
have relativistic temperature. Movement of a pair is determined
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by crossed electric and magnetic fields in a jet. If such pairs are
created in some jet domain (e.g. an outer shell), the local electric
and magnetic field screening takes place due to average charge
separation and, consequently, appearance of electric and magnetic
fields due to these charges and the corresponding currents. Locally,
the drift velocity of plasma changes following the field screening,
and this leads to either plasma acceleration due to the MHD process
or plasma deceleration due to radiation of ‘excess’ energy.

In Section 3, we consider pairs created at rest in the laboratory
frame (i.e. in the reference frame connected with the ‘central en-
gine’), thus moving backwards with respect to the jet bulk plasma
outflow. We present the solution for such a case as being the most
demonstrative and intuitively clear. For such simple initial condi-
tions, we obtain the equation for the bulk Lorentz factor and the
behaviour of flow magnetization after loading. Starting from mi-
croscopic motion, we calculate the energy-momentum tensor of
loading pairs in Section 3.1. It is shown in Section 3.2 that the local
screening of electric and magnetic fields is important and leads to
bulk motion local deceleration and to the change in the integrals
of motion as well. We estimate the appropriate change in a local
magnetization of a flow in Section 3.3. In Section 4, the result of
general initial conditions for pairs is obtained. We show that the
pairs created in the centre-of-mass (c.m.) frame move faster than
a jet that accelerates the bulk plasma due to electric and magnetic
field enhancement. If the pairs are created with c.m. at rest in the jet
proper frame, no field screening takes place, so the flow decelerates
due to the pure mass loading. The luminosities in high-energy jet
radiation are estimated to explain the acceleration and deceleration
rates observed by Homan et al. (2015).

2 SE T U P

In what follows, we will need a standard description of ideal ax-
isymmetric MHD outflow. The magnetic field B and electric field E
configuration is described by the magnetic flux function �(r, ϕ, z)
in a cylindrical coordinate system with unit vectors

{
er , eϕ, ez

}
by

B = ∇� × eϕ

2πr
− 2I

rc
eϕ,

E = − �F

2πc
∇�, (1)

where �F(�) (Ferraro 1937) is an angular velocity and one of
five integrals, i.e. functions preserved on the magnetic surfaces
� = const (see e.g. Beskin 2009 for more details). Here, c is the
velocity of light. The other four are the entropy s(�), particle to
magnetic flux ratio η(�), defined by

u = η

n
B + �

�Fr

c
eϕ, (2)

and energy and momentum fluxes

E(�) = �FI

2πc
+ μη�,

L(�) = I

2π
+ μηruϕ. (3)

Here the following physical properties of a flow are introduced:
particle number density in a jet proper frame n (Beskin 2010), the
total current I inside the magnetic tube, the flow bulk Lorenz factor
� and the relativistic enthalpy μ. In what follows, we consider a
cold flow s = 0 so that μ = mec2.

The important function that characterizes an MHD outflow is
a magnetization, i.e. the ratio of the Poynting flux to the plasma
kinetic energy flux:

σ = B2

4πmec2nlab�
, (4)

where nlab is the particle number density in the laboratory frame,
and it can be expressed through the particle number density in a jet
proper frame n as nlab = n�. Using definition (1), the magnetization
can be rewritten as

σ = �FI

2πmec3η�
. (5)

3 PA RT I C L E L OA D I N G – PA I R S C R E AT E D AT
REST

3.1 Particle motion

As already discussed in the introduction, the action of the pair
loading on the magnetically dominated flow was mainly considered
either phenomenologically (Derishev et al. 2003) or numerically
(Stern & Poutanen 2006). Consistent analytical analysis for 1D
(spherically symmetric) outflow was done by Lyutikov (2003). In
particular, it was demonstrated that the action of particle loading is
similar to negative pressure. On the other hand, shown below, some
important properties (such as anisotropic pressure and redistribution
of charges diminishing the electric and magnetic fields) were not
taken into consideration. In the frame of the MHD approach briefly
outlined in Section 2, the angular velocity �F and the total current
I change due to charge loading.

Following Lyutikov (2003), we consider here the simplest model
of particle loading where the electron–positron pairs are created at
rest in the nucleus rest frame (laboratory frame). This implies that
these particles carry no energy E and angular momentum L flux,
with the total gain in particle energy resulting from the diminishing
of the Poynting flux of the magnetized wind.

Let us solve the equation of motion

dui

dτ
= e

mec
F ikuk, (6)

for four-velocity of particle ui with the initial condition in the nu-
cleus rest frame ui(0) = {1, 0, 0, 0}. The solution is

γ (τ ) = B2

B ′2 − E2

B ′2 cos �′τ, (7)

ur (τ ) = − E

B ′ sin �′τ, (8)

uϕ(τ ) = BpE

B ′2
(
1 − cos �′τ

)
, (9)

uz(τ ) = BϕE

B ′2
(
1 − cos �′τ

)
. (10)

Here, B and E are the magnetic and electric fields in the laboratory
frame, B ′ = √

B2 − E2 is a field in a jet frame, τ is the proper
time in the charges comoving frame (which is different from the jet
proper frame) and

�′ = eB ′

mec
(11)

is a proper gyrofrequency, i.e. gyrofrequency in a jet proper frame
instantly coincident with plasma bulk motion, which is essentially
a drift motion in crossed magnetic and electric fields.
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Assuming the pairs are created uniformly over the jet, we av-
erage the velocities and energy at a given space point over all the
particles with trajectories crossing this point. This is equivalent to
averaging over the gyroperiod, with the procedure details described
in Appendix A. So, we obtain the following Lorentz factor and
velocities:

〈γ 〉 = �2

(
1 + β4

2

)
, (12)

〈vr〉 = 0, (13)

〈vz〉 = cβ cos α, (14)

〈vϕ〉 = cβ sin α. (15)

Here we use the relation B2/B′2 = �2 with � being the Lorentz
factor of the drift velocity, β = √

1 − �−2 is the drift velocity,
cos α = Bϕ/B and sin α = Bp/B.

We stress that the mean energy of the individual loaded particle
εld exceeds essentially the energy of particles in a jet εjet = mec2�:

εld = mec
2〈γ 〉 ≈ 3

2
mec

2�2. (16)

However, the mean velocity of each loaded particle coincides with
the drift velocity of plasma in a jet:

〈vld〉 = vdrift. (17)

This implies that loading supplies the initially cold plasma with
relativistic particles.

Let us determine the thermodynamical parameters calculating the
components of the energy-momentum tensor T ik

ld of loaded particles.
In order to do it, we average the components of the tensor

T ik
ld = mec

2〈nrestuiuk〉 (18)

(see Appendix B for more details) and compare the result with the
form of energy-momentum tensor expressed through the internal
energy density εld, longitudinal Pn and transverse Ps components
of the pressure with respect to the magnetic field (Tsikarishvili,
Rogava & Tsikauri 1995; Kuznetsova 2005) and hydrodynamical
four-velocity Ui:

T ik
ld =

(
εld + Ps + b2

4π

)
UiUk +

(
Ps + b2

8π

)
gik

−
(

Ps − Pn

b2 + 1

4π

)
bibk. (19)

Here b2 is the plasma proper magnetic field energy density, and

bi = 1

2
ηijklUjFkl (20)

is the Lichnerowicz (Lichnerowicz 1967; Asséo & Beaufils 1983)
four-vector (b2 = B′2). It gives for the internal energy density of
loaded particles

εld = mec
2nld� (21)

and for pressure components

Pn = 0, (22)

Ps = 1

2
mec

2nldβ
2�. (23)

Hence, the energy-momentum tensor (19) corresponds to
anisotropic pressure with Pn = 0 resulting from particle rota-
tion in the rz-plane only. Thus, at this point our approach differs

Figure 1. Cartoon of the loading plasma trajectories and induced electric
and magnetic fields.

from the one considered by Lyutikov (2003). It is important that
in the cylindrical geometry under consideration the volume force
F i = −∇kPik appears even for a constant value Ps:

F = −Ps

r
er . (24)

3.2 Mass-loaded flow properties

The problem of pair loading the MHD flow is its impact on the an-
gular velocity �F, which describes the electric field, and the current
I, which describes the toroidal component of the magnetic field. We
argue that both quantities change due to charge loading, and its ef-
fect on the jet dynamics is significant and cannot be reduced to pure
redistribution of energy between the cold plasma with unchanged
�F and I and loaded plasma.

Indeed, pairs initially created at rest start cycloid movement in
crossed electric and magnetic fields with the radial velocity com-
ponent directed oppositely for electrons and positrons (it is obvious
when one notices that the charge sign appears in gyrofrequency
�′). This leads to mean over gyroperiod separation (see Fig. 1) of
positive and negative charges in the r direction:

r⊥ = 〈r+(τ ) − r−(τ )〉 = −mec
2β�2

eB

(
2 + β2

)
. (25)

In the simplest case of a shell domain with the uniform loaded
particle number density nld as measured in a jet proper frame, the
sides of a constant r possess a surface charge σ e and a surface
current σ evdrift. Indeed, if pairs are created uniformly over a shell
{Lr, r�ϕ, Lz} with mean separation r⊥ in the r direction, this can
be envisioned as two shells with uniformly distributed positive and
negative charges, shifted in the r direction on the mean charge
separation r⊥. The total charges on opposite faces are ±enr⊥r�ϕLz,
with effective surface charge density being σ e = enr⊥. As pairs
are moving in crossed electric and magnetic fields with the drift
velocity, there is a surface current of opposite signs flowing along
the r boundaries of a pair creation domain. The significant magnetic
field due to these currents is inside this domain. These charge and
current densities partially screen the initial electric and magnetic
fields. This must lead to a change in the bulk jet velocity, depending
on the proportion in which fields were screened.
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The effect of jet acceleration or deceleration in this model may be
obtained self-consistently. We designate all the flow characteristics
after mass loading by tilde. They are the screened electric and
magnetic fields, the appropriate Lorentz factor of a jet bulk motion
and so forth. We assume that the proper motion of loaded particles
is determined by these screened fields. In particular, we substitute
the parameters of accelerated flow and the screened fields into the
expression for the average charge separation (25). Thus, in equation
(25) we use the fluid velocity cβ̃, Lorentz factor �̃ and screened
magnetic field B̃ instead of initial unperturbed flow parameters.

The surface charge in a laboratory frame is equal to

σe = enlab
ld r⊥ = e�̃nldr⊥, (26)

where r⊥ is a mean over laboratory time (or, equally, over the loaded
particle ensemble) charge separation. The associated electric field
disturbance for the given loaded particle number density is

δE = 4πmec
2nldβ̃

2�̃3

Ẽ

(
2 + β̃2

)
. (27)

The appropriate magnetic field disturbance δB produced by two
opposite surface currents flowing along the domain boundaries of a
constant r is δB = β̃δE, which gives

δB = 4πmec
2nldβ̃

2�̃3

B̃

(
2 + β̃2

)
. (28)

The fields are disturbed only locally in the mass loading domain. The
proposed self-similar way of calculating the electric and magnetic
fields is applicable while the disturbance is much less than the initial
fields. So, we imply that δB/B � 1 or equally

1

σ

nld

n
�β2

(
1 + β2

3

)
� 1. (29)

Here, let us note that such a screening will indeed lead to a
jet deceleration. The initial fields correlate as E = βB. The fields
created by loaded particles correlate as δB = β̃δE, so the magnetic
field screening is less than that of the electric field. This leads to a
smaller drift velocity β̃ = (E − δE)/(B − δB).

Let us obtain the local (in a pair creation domain) self-consistent
drift velocity β̃ of bulk plasma due to field screening. The fields
now depend on �̃ and nld:

B̃ = B

2

⎡
⎣1 +

√
1 − 4

σ

nld

n

�̃3

�2
β̃2

(
2 + β̃2

)⎤⎦ , (30)

Ẽ = E

2

⎡
⎣1 +

√
1 − 4

σ

nld

n

�̃3

�2

β̃2

β2

(
2 + β̃2

)⎤⎦ . (31)

Here, we use the expression for a flow magnetization given by (4).
The explicit equation on �̃ is

�̃ = B̃√
B̃2 − Ẽ2

, (32)

where B̃ = B − δB and Ẽ = E − δE, which,through (30)–(31),
depend themselves on �̃ and nld. After some tiresome algebra, one
can obtain the following algebraic equation on �̃:

−16�̃10 − 24�̃9q
(
2�2 − 1

) + �̃8
[
32 − 9q2

]
+ 56�̃7q

(
2�2 − 1

) + �̃6
[
16

(
�4 − �2 − 1

) + 24q2
]

− 40�̃5q
(
2�2 − 1

) + �̃4
[−16

(
�4 − �2

) − 22q2
]

+ 8�̃3q
(
2�2 − 1

) + 4�̃2q2 − q2 = 0, (33)

Figure 2. Relative Lorentz factor �̃/� is plotted as a function of the relative
loading particle number density nld/n for different initial �. The solid curve
corresponds to � = 5, dashed to � = 10, dash–dotted to � = 15 and dotted
to � = 20.

where

q = 4

σ

nld

n
. (34)

We see in Fig. 2 that for a fairly moderate ratio nld/n the jet
deceleration effect is appreciable. The effect is more pronounced
for the faster jets.

3.3 Loaded flow magnetization

Now we are ready to discuss back reaction of the particle loading
on the properties of the magnetically dominated flow. We sup-
pose that the magnetized jet consists of electromagnetic field, cold
particle flow (number density in the comoving reference frame n
and relativistic enthalpy μ) and loading particles with the energy-
momentum tensor T ik

ld (19), both components having the same hy-
drodynamical velocity 〈v〉.

General expressions for the energy E(�) and angular momentum
L(�) fluxes of the ideal relativistic MHD flow with anisotropic pres-
sure (Asséo & Beaufils 1983; Tsikarishvili et al. 1995; Kuznetsova
2005) include a standard anisotropic pressure parameter

βa = 4π
Pn − Ps

b2
. (35)

In our case, βa < 0. For steady-state flow, the energy conservation
is written as

div S = 0, (36)

where S i = T0 i. In the case of a cylindrical axisymmetric flow for
the given Lichnerowicz (1967) vector (see Appendix B) with b0 = 0,
it transforms into

∂

∂z

(
b2

4π
+ Ps + εld + εbulk

)
�̃2ṽz = 0, (37)

and after integration over z we obtain

E(�)Bp = const, (38)

with the energy flux

E(�) = �̃FĨ

2πc
(1 + |βa|) + μldηld�̃ + μη�̃. (39)
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Each of the four terms in (39) originates from the appropriate term
in (37). The angular momentum flux is

L(�) = Ĩ

2π
(1 + |βa|) + μldηldr⊥ũϕ + μηr⊥ũϕ. (40)

Expressions (39) and (40) are sums of standard relations for cold
flow (3) and appropriate terms for loaded charged pairs. We must
note here that the angular velocity �̃F and the current density Ĩ are
defined by the screened electric and magnetic fields. Here particle-
to-magnetic flux ratios for initial η(�) and loading ηld(�) plasma
are determined by the standard relations

u = η

n
B̃ + �̃Fr⊥�̃eϕ,

uld = ηld

nld
B̃ + �̃Fr⊥�̃eϕ. (41)

Since 〈uld〉 = u one can conclude that ηld = ηnld/n. Finally,
μ = ε/n = mc2 and μld = εld/nld = mc2�̃. In (39) and (40), the first
terms �̃FĨ /2πc and Ĩ /2π correspond to the electromagnetic flux,
while the second and third ones describe the fluxes corresponding
to anisotropic pressure and internal energy of the loading particles,
respectively. The last terms correspond to cold wind.

Taking into account the results of Section 3.2, we can find a
loaded flow magnetization. As secondary particles in the simple
problem stated in Section 3.1 carry zero energy flux (39), we may
equate the corresponding integrals E before and after loading:

�FI

2πc
+ μη� = �̃FĨ

2πc
(1 + |βa|) + μldηld�̃ + μη�̃. (42)

This expression allows us to calculate the magnetization of the
mass-loaded flow. Indeed, one can rewrite the Poynting flux using
standard functions �̃F and Ĩ as

S̃ = 1

2πc
�̃FĨ B̃p. (43)

This corresponds to the first term on the RHS in the energy flux
(42). The other three terms are anisotropic pressure of loaded flow,
motion of loaded relativistic plasma and bulk motion of jet plasma.
We must stress that the term with parameter |βa|, although being
traditionally written using the Poynting flux, is related to the plasma
internal energy, carried by loaded particles (see equation 37). Thus,
the definition of the magnetization parameter after loading is

σ̃ =
(

�̃FĨ

2πc

) (
�̃FĨ

2πc
|βa| + μldηld�̃ + μη�̃

)−1

. (44)

Using (42), we finally obtain the relation for the magnetization of
loaded flow as

σ̃ = σ

(
S̃

S

) [
�̃

�

(
1 + �̃

nld

n

)
+ nld

n

�̃3

�2

β̃3

2β

]−1

. (45)

We plot in Fig. 3 the loaded magnetization σ̃ as a function of
the loading particle number density nld for different initial bulk
flow Lorentz factors �. As one can see, for � = 5 and 10 the
magnetization drops. However, for greater Lorentz factors it grows
and becomes more than unity. It has been noted in Section 3.2
that the charge loading screens the electric field greater than the
magnetic field. As a consequence, the Poynting flux of a flow always
drops. But the initial faster flow decelerates more effectively, so for
greater Lorentz factors the drop in the kinetic energy flux is greater
than that in the Poynting flux, which leads to the growth of the

Figure 3. Relative magnetization σ̃ /σ is plotted as a function of the relative
loading particle number density nld/n for different initial �. The solid curve
corresponds to � = 5, dashed to � = 10, dash–dotted to � = 15 and dotted
to � = 20.

flow magnetization. For nld/n → +0, the magnetization always
decreases as

σ̃

σ
= 1 −

(
3

2
+ 3

σ

)
nld

n
� ≈ 1 − 9

2

nld

n
�, (46)

which can be seen in Fig. 3. This implies that for a small enough
loading particle number density the field screening, and so the di-
minishing of the Poynting flux, is more important than the flow
deceleration itself.

We must stress again that the screening of electric and magnetic
fields is important for arbitrarily low pair loading. Indeed, suppose
that q → +0, so �̃ → � − 0. In this case, we can retain the leading
terms in equation (33):

16�̃6�4 − 16�̃10 − 48q�̃9�2 = 0 (47)

and obtain

�̃ = � − 3

σ

nld

n
�2. (48)

This relation corresponds to a tangent line to any curve in Fig. 2 at
nld/n = 0.

On the other hand, we may propose that for extremely low loaded
particle number density the effects of the electric and magnetic field
screening is negligible, and the angular velocity �F and current I
do not change. Under this assumption one can obtain from (42)

� − �̃ = 3

2σ

nld

n
�2, (49)

which is in contradiction with (48). This implies that the effect of
screening of the electric and magnetic fields is important for any
rate of pair loading, and, apparently, it has not been taken into
consideration by the previous works. When the loading particle
number density tends to zero, the deceleration rate is greatest and
can be expressed in the following short form:

�̇

�
= −3�

2σ

ṅ

n
. (50)

4 EFFECTS O F PAI RS CREATED WI TH
A R B I T R A RY V E L O C I T I E S

In Section 3, we have considered pairs created at rest in the labo-
ratory frame. Let us now consider the effects of particle loading if

MNRAS 469, 3840–3850 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/469/4/3840/3815538/On-the-acceleration-and-deceleration-of
by MPI Study of Societies user
on 10 October 2017



On the acceleration and deceleration of jets 3845

pairs are created with their c.m. moving with the velocity β0 and
corresponding Lorentz factor �0 along the jet. If the energies of in-
teracting photons are greater than threshold, electron and positron
are created with Lorentz factors γ ′

0 and isotropically distributed
velocities β ′

0 in the c.m. frame. The direction of velocity for elec-
tron/positron in the c.m. frame is set by spherical angles θ ′ and ϕ′.
The initial conditions for such a pair are

γ0± = �0γ
′
0

(
1 ± β0β

′
0 cos θ ′) ,

ur
0± = ∓γ ′

0β
′
0 sin θ ′ cos ϕ′,

uz
0± = �0γ

′
0

(
β0 ± β ′

0 cos θ ′) . (51)

Here, plus and minus designate the positive and negative charges, as
the initial conditions at the laboratory frame are different for them.
The particle Lorentz factor and r-component of four-velocity are

γ±(τ ) = �2
(
γ0± − βuz

0±
)

+ cos �′τ�2β
(
uz

0± − βγ0±
)

± sin �′τβ�ur
0±,

ur
±(τ ) = cos �′τur

0± ± sin �′τ�
(
uz

0± − βγ0±
)
. (52)

The r-coordinate for each charge is

r±(τ ) =
[
R0 ± c�

�′
(
uz

0± − βγ0±
)]

∓ cos �′τ
c�

�′
(
uz

0± − βγ0±
) + sin �′τ

c

�′ u
r
0±. (53)

In order to obtain the mean charge displacement, we need to aver-
age the particle displacement at every space point over the particle
ensemble. The direction of initial velocity of each charge in the
c.m. frame is isotropic. The trajectory phase ϕ = �′τ has a weight
function γ ±(τ ) since each charge spends different laboratory times
on each part of its gyration trajectory. Thus, the full distribution
function is

f±(θ ′, ϕ′, ϕ) = γ±(θ ′, ϕ′, ϕ), (54)

with the normalization included explicitly.
Obviously, for a given pair the Lorentz factors of electron and

positron are different, so we define the average charge displacement
as

r⊥ = 〈r+〉 − 〈r−〉

=
∫

r+f+d�θ ′ϕ′ dτ

(∫
f+d�θ ′ϕ′ dτ

)−1

−
∫

r−f−d�θ ′ϕ′ dτ

(∫
f−d�θ ′ϕ′ dτ

)−1

. (55)

Using this expression, one can find the mean charge displacement

r⊥ = mec
2�̃2

eB̃
�0γ

′
0

[
2(β0 − β̃)

(
1 + β

′2
0

3

)

− β̃

(
β0 − β̃

)2

1 − β̃β0
− β̃(1 − β̃β0)

β
′2
0

3

]
. (56)

Three different limits can be considered for the problem.

4.1 Deceleration along the jet due to field screening

The first case corresponds to condition �0 � �. As the limiting
case we set �0 = 1 which leads to

r⊥ = −mec
2β̃�̃2

eB̃
γ ′

0

(
2 + β̃2 + β

′2
0

)
. (57)

This is exactly the loading considered in the previous section, but
for the loaded particles with higher initial temperature. Thus, the
effect of the field screening is even more pronounced for non-zero
β ′

0. Indeed, we see from equations (25) and (57) that the average
charge displacements r⊥ differ by the factor

f1 = γ ′
0

(
2 + β̃2 + β

′2
0

)
2 + β̃2

≥ 1. (58)

Thus, all the results of Section 3.2 are applicable if we divide the
loading particle number density by f1. In particular, we need to load
the flow by f1-times less charge number density than in Section 3.2
in order to achieve the same deceleration rate. However, as the
reaction cross-section behaves as σγγ ∝ (ln 2x − 1)/x2, where x is
a photon energy normalized on the electron rest mass in the c.m.
system (see e.g. Svensson 1982), the pairs are more likely created
with non-relativistic or mildly relativistic speeds with respect to the
c.m. system.

We must note that although the impact of charges creation de-
scribed in Sections 3 and 4.1 with c.m. moving slower than the
jet initial bulk velocity is very illustrative, the physical conditions
that lead to such a pair creation can hardly be imagined in the jet
environment. So, we proceed to the cases that have astrophysical
applications.

4.2 Pure mass loading

The condition �0 ≈ � and β0 ≈ β corresponds to the case when
c.m. of each pair is moving with the hydrodynamic velocity. As
can be seen from the general expression for the average charge
displacement (56), no charge separation and, consequently, no field
screening take place in this case. The effect of flow deceleration is
purely due to mass loading.

However, due to cylindrical jet geometry this will lead not to
the flow acceleration, but to a flow deceleration. Pairs created in a
c.m. reference frame at rest with reference to bulk flow motion do
not contribute to electric and magnetic field screening/enhancement.
Thus, there is no change in the integral �F(�), corresponding to the
electric field, and in the total current I, corresponding to the magnetic
field. The analysis of the effect of deceleration is even simpler in
this case, and the deceleration rate can be obtained through the
examination of the expression for the integral E(�) solely.

Using the known charge motion (51) and (52) with �0 = � and
β0 = β, we obtain

T 00
ld = mec

2nld�
2γ ′

0

(
1 + β2 β

′2
0

3

)
,

T 11
ld = mec

2nldγ
′
0

β
′2
0

3
. (59)

From these we get the internal energy density and pressure

εld = mec
2nldγ

′
0,

Ps = mec
2nldγ

′
0

β
′2
0

3
. (60)
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Figure 4. The deceleration due to pure mass loading. Ratio of the Lorentz
factors after and before loading is plotted as a function of the relative loading
particle number density nld/n for different γ ′

0. The solid curve corresponds
to γ ′

0 = 2, dashed to γ ′
0 = 5, dash–dotted to γ ′

0 = 10 and dotted to γ ′
0 = 15.

The particle energy flux before mass loading is defined by equa-
tion (3) and after mass loading by equation (39). But the total change
in the energy flux is equal to the energy flux of created pairs,

�E = mec
2ηγ ′

0

nld

n
�. (61)

Thus, we equate the energy fluxes before and after loading:

�FI

2πc
+ μη� + �E

= �FI

2πc

(
1 + 4π�̃2

B2
Ps

)
+ μη�̃ + μηγ ′

0

nld

n
�̃. (62)

Obviously, for β ′
0 = 0 there is no change in the flow Lorentz factor

because the cold plasma loaded with the average drift velocity does
not contribute to the change in the bulk flow velocity. For relativistic
plasma, we obtain the following relation on �̃ of decelerated flow
for given β ′

0 and nld:

�̃2

�2

nld

n
γ ′

0

β
′2
0

3
+ �̃

�

(
1 + γ ′

0

nld

n

)
= 1 + γ ′

0

nld

n
. (63)

The form of this equation suggests that the rate of the flow decelera-
tion due to pure mass loading does not depend on �, but on loading
particle temperature, which is characterized by γ ′

0. The result is
shown in Fig. 4. For nld/n � 1, the deceleration rate is given by

�̇

�
= − ṅ

n
γ ′

0

β
′2
0

3
. (64)

Thus, the flow magnetization due to pure mass loading is defined
by

σ̃

σ
=

[
�̃

�
+ nld

n
γ ′

0

(
�̃

�
+ �̃2

�2

β
′2
0

3

)]−1

(65)

and it is always less than unity (see Fig. 5).

4.3 Acceleration along the jet due to field enhancement

If the c.m. velocity of a pair is much greater than the jet bulk velocity
�0 � �, we obtain the following expression for the average charge
displacement using (56):

r⊥ = mec
2

eB̃

�0γ
′
0

2

(
1 + β

′2
0

3

)
. (66)

Figure 5. The deceleration due to pure mass loading. Ratio of the flow
magnetization after and before loading is plotted as a function of the relative
loading particle number density nld/n for different γ ′

0. The solid curve
corresponds to γ ′

0 = 2, dashed to γ ′
0 = 5, dash–dotted to γ ′

0 = 10 and dotted
to γ ′

0 = 15.

Figure 6. The plasma acceleration due to charge loading with pair c.m.
having �0 = 103. Ratio of the Lorentz factors after and before loading is
plotted as a function of the relative loading particle number density nld/n
for different �. The solid curve corresponds to � = 5, dashed to � = 10,
dash–dotted to � = 15 and dotted to � = 20.

In this case, average charge separation is positive. This implies that
instead of electric and magnetic field screening the enhancement of
the fields takes place. The flow must accelerate due to such charge
movement. This is easy to understand: opposite charges initially
created in the same space point move in the opposite direction de-
pending on the initial velocity of c.m. in the jet proper frame where
the Lorentz force is due to B′. This induces a flow acceleration.

The Lorentz factor of a flow after loading, calculated as cor-
responding to the drift velocity in disturbed fields, satisfies the
following algebraic equation:

−16�̃6 + 16�̃4 + �̃316qβ�2

+ �̃216�2
(
�2 − 1

) + �̃
(−8qβ�2

) + q2 = 0, (67)

where

q = 4

σ

nld

n
�0γ

′
0

(
1 + β

′2
0

3

)
. (68)

The appropriate solutions are presented in Fig. 6. As we see,
the faster the flow, the slower it accelerates. For nld/n � 1, the
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acceleration rate is

�̇

�
= 1

�σ

ṅ

n
�0γ

′
0

(
1 + β

′2
0

3

)
. (69)

In order to compute the behaviour of a flow magnetization, we
calculate the internal energy and anisotropic pressure through the
corresponding energy-momentum tensor components. For �0 � �,
one can obtain

T 00
ld = mec

2�nld

[
1

2
�0γ

′
0

(
1 + β

′2
0

3

) (
1 + β2

2

)

+ �2β2 γ ′
0

�0

β
′2
0

3

]
,

T 11
ld = mec

2�nld

[
γ ′

0

�0

β
′2
0

3
+ �0γ

′
0

4�2

(
1 + β

′2
0

3

)]
,

(70)

and

εld = mec
2nld

�0γ
′
0

2�

(
1 + β

′2
0

3

)
,

Ps = T 11
ld .

(71)

Now using the magnetization definition (44) and obtained flow
parameters (71), the following expression for the ratio of magneti-
zations after and before loading can be written as:

σ̃

σ
= S̃K

K̃S
, (72)

where

K̃

K
= �̃

�
+ nld

n

[
�0γ

′
0

2�̃

(
1 + β

′2
0

3

)

+ β̃

β

�̃3

�2

(
γ

′2
0

�0

β
′2
0

3
+ �0γ

′
0

4�̃2

(
1 + β

′2
0

3

))]
,

(73)

and the ratio S̃/S can be readily computed using the following
expression for the enhanced fields:

B̃ = B

2

⎡
⎣1 +

√
1 + q

�̃β̃

�2

⎤
⎦ , (74)

Ẽ = E

2

⎡
⎣1 +

√
1 + q

�̃β̃

�2 − 1

⎤
⎦ , (75)

where q is defined by (68). As shown in Fig. 7, here again, although
the plasma accelerates, the Poynting flux grows faster after loading
than the plasma kinetic energy, so the magnetization is greater than
unity.

Here we should stress that there are two different processes lead-
ing to a local plasma acceleration or deceleration. The first one is
connected with the average charge separation, and the second one
with the non-zero loading plasma temperature for the pure mass
loading. In both cases, the average velocity of each of the created
particles is equal to the fluid velocity. However, there is also a
gyration motion that can be interpreted as the loading plasma tem-
perature. This effective temperature is defined by the initial Lorentz
factor in the pair c.m. system γ ′

0 and the corresponding velocity
β ′

0. The effects connected with the charge separation and the field
screening cannot be erased by cooling of loaded plasma due to
radiation or instabilities as β ′

0 → 0. Indeed, once the pair is cre-
ated, its average separation (25), (57) and (66) does not go to zero

Figure 7. The plasma acceleration due to charge loading with pairs c.m.
having �0 = 103. Ratio of the flow magnetization after and before loading
is plotted as a function of the relative loading particle number density nld/n
for different �. The solid curve corresponds to � = 5, dashed to � = 10,
dash–dotted to � = 15 and dotted to � = 20.

as β ′
0 → 0. Thus, any process that wipes the gyration of loaded

particles does not affect the field screening and, consequently, the
appropriate plasma acceleration or deceleration. It is not so with the
pure mass loading: the effect of a flow deceleration for a pure mass
loading depends on the non-zero temperature [see (63) and (64)],
so the bulk-plasma velocity does not change for β ′

0 = 0.

5 A STRO PHYSI CAL APPLI CATI ON

The process that can provide the appreciable number of pairs is
a conversion of high-energy jet radiation with photon energies Eγ ,
propagating along the jet within opening angle 1/� in the laboratory
frame, on the external soft photon field with photon energies εsoft.
The latter may be reprocessed by environment thermal radiation of
an accretion disc, as suggested by Sikora, Begelman & Rees (1994).
Such a process would account for the jet acceleration since the c.m.
of these two photons have the Lorentz factor

�0 =
√

Eγ

4εsoft
. (76)

For soft photons in the infrared to ultraviolet range (10−2 to 102 eV)
and reaction threshold condition, the Lorentz factor is in the 103–
107 range along the jet. Thus, the pairs are created with c.m. moving
faster than cold plasma before the charge loading, accelerating the
jet plasma, as shown in Section 4.3. This process can operate natu-
rally only on sub-parsec to parsec scales since there we may expect
a strong enough soft photon field (Sikora et al. 1994).

The probability of a pair creation due to two-photon conversion
has been studied in a number of works by Gould & Schreder (1967),
Svensson (1982), Aharonian, Atoyan & Nagapetyan (1983) and
Zdziarski (1988). The total pair creation rate due to reaction of
γ -quanta with the number density Nγ on isotropically distributed
soft photons with the number density Nsoft is given by

ṅγ γ = c

2
σTNγ Nsoft

∫ ∞

0
dx ñγ (x)

×
∫ ∞

1/x

dy ñsoft(y)
1

x2y2
ϕ(xy),

(77)

where ñγ (x) is normalized to unity energy spectrum of γ -quanta
depending on dimensionless energy x = Eγ /mec2 and ñsoft(y) is the
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same for soft photons with energy εsoft = ymec2 (Svensson 1982).
Here,

ϕ(xy) =
∫ xy

0

3

8πr2
0

σ̃γ γ (s)s ds (78)

is averaged solid angle γ γ → e+e− reaction cross-section, σT =
8πr2

0 /3 is a Thomson cross-section, r0 = e2/mec2 is a classical
electron radius and σTσ̃γ γ is a γ γ → e+e− cross-section (see e.g.
Rybicki & Lightman 1979; Gould & Schreder 1967; Svensson 1982;
Aharonian, Atoyan & Nagapetyan 1983; Zdziarski 1988). We use
the asymptotic expression for ϕ(xy), obtained by Gould & Schreder
(1967). The reaction threshold condition is xy ≥ 1.

The number density of soft photons may be estimated as

Nsoft = Lsoft

4πR2
softc〈εsoft〉

, (79)

and of γ -quanta as

Nγ = Lγ

Sγ c〈Eγ 〉 . (80)

Here, Lsoft and Lγ are the corresponding luminosities. The first one
is distributed isotropically over 4πR2

soft, and for the second one we
assume to be distributed over a jet cross-section in a laboratory
frame. The 〈E〉 are averaged energy distribution of the correspond-
ing photon fields.

Our aim is to obtain the luminosities, needed to account for the
observed jet accelerations and deceleration. We take the monoener-
getic photon spectra as the zero estimate. As ϕ(xy) has a maximum
of 0.21 (in the units of the Thomson cross section) at xy ≈ 3.5
(Zdziarski 1988), we take a rough model for the high-energy con-
version on soft photon field: εsoft = 1.6 × 10−12 erg, Eγ = 1.5 erg.
From these the pair c.m. Lorentz factor �0 = 4.8 × 105 and the
initial charge energy in the c.m. frame γ ′

0 = 1.8 can be computed.
This gives for the pair production rate

ṅγ γ = 8.8 × 10−10�2 Lsoft, 45Lγ, 45

R2
soft, pcR

2
γ, pc

cm−3 s−1. (81)

Here, (L/erg s−1) = 1045L45.
As reported by Homan et al. (2015), the observed characteristic

jet acceleration and deceleration rate is �̇/� ≈ 10−3 to 10−2 yr−1

in a galaxy frame, or

�̇

�
= 3.1 × 10−8f s−1, (82)

where f is 10−3 to 10−2 and is an observed factor of acceleration or
deceleration. In order to account for such acceleration, we obtain
from (69) the corresponding pair-creation rate as

ṅ = 2.9 × 10−13f n cm−3s−1. (83)

Thus, if we employ n ≈ 103 cm−3 on a parsec distance (Lobanov
1998), � ≈ 10 and Lsoft ≈ 1045 erg s−1 (Stern & Poutanen 2006), we
need a luminosity of the order of 1040 erg s−1 in TeV radiation of a
jet to explain the observed acceleration rate by the above-described
process.

On the other hand, the deceleration may also occur due to conver-
sion of two photons of high-energy jet radiation. For this reaction,
the pairs are created with c.m. at rest in the jet proper frame on av-
erage since in the jet proper frame the radiation can be considered
as isotropic. Thus, the results of Section 4.2 are applicable, and a
jet deceleration due to pure mass loading takes place. This process
can operate on scales greater than a few parsecs, where there is no
substantial direct photon field from the disc or reprocessed by the

clouds disc radiation. If we want to account for the observed decel-
eration rates on scales of a few 10 pc, the pair creation threshold
condition implies that we need photons from the jet with energies
greater than Eγ = 1.5 × 10−6 erg. From expression (81), rewritten
for the photons of a jet radiation, we obtain the pair-production rate

ṅγ γ = 8.8 × 10−12L2
γ, 45 cm−3 s−1. (84)

Using (64) for the factor f, reported by Homan et al. (2015), we get
ṅ/n = 7.8 × (10−12−10−14) s−1. Thus, to account for the observed
deceleration rates, we need a luminosity in the laboratory frame L
≈ (3–9)1044 erg s−1 at MeV photons at a distance of 10 pc.

6 R ESULTS AND DI SCUSSI ON

The analysis of kinematic properties of bright features of relativistic
jets (Homan et al. 2015) showed that the systematic accelerations
and decelerations of bright features are normal among the jets. We
propose a mechanism related to radiation that may change locally
but significantly the bulk flow velocity, thus leading to the observed
accelerations and decelerations.

The two-photon pair conversion process supplies a jet with
charges of number density that can be estimated using the stan-
dard relations (77) and (78) (Gould & Schreder 1967; Svensson
1982; Zdziarski 1988), i.e. the process of mass and charge loading.
We show that the latter is more important, since it leads to magnetic
and electric field screening or enhancement, with the consequent
influence on the flow motion in the domain of pair creation. We
have shown that an important role in the process is connected with
the motion of specific charges in the crossed electric and magnetic
fields and with field screening or enhancement. The charge loading
leads to a local change in such MHD outflow parameters as the
angular velocity �F(�) and the total current I. It is necessary to
stress that such an initial charge separation is not wiped out with
the end of gyromotion due to radiation or instabilities and thus the
effect of field screening is unaffected by it.

The proposed mechanism works as a kind of radiation friction.
Indeed, if the radiation field is such that the pair c.m. reference frame
moves faster than the bulk flow, the charge gyration leads to the
electric and magnetic field enhancement and the flow acceleration.
For the pairs created due to hard γ -quanta of a jet radiation with the
external soft isotropic radiation field, the c.m. Lorentz factor exceeds
103, which leads to extremely effective local flow acceleration even
for loading pair number density as low as tenths of a per cent of
the initial particle number density. Such pairs are mainly created
close enough to the jet origin where the external radiation from the
accretion disc provides a soft external radiation field (Sikora et al.
1994). For the pairs with the c.m. moving slower than the bulk flow
velocity, local deceleration takes place either due to partial screening
of electric and magnetic fields (see Section 3.2) or due to pure mass
loading without significant field screening (see Section 4.2). The
latter case is more probable as in the far jet domains there is no
significant external radiation field, and pairs are mainly created due
to interaction of internal jet photons, with the c.m. moving with the
jet velocity on average.

Thus, the effect may account for the statistically significant ac-
celerations of bright features of a jet at distances less than 50 pc and
decelerations at further distances from the jet core as observed by
MOJAVE programme.

The suggested mechanism of charge loading may play the role of
a source of instabilities in a jet. The mirror instability (Rudakov &
Sagdeev 1961) may wipe out the anisotropic pressure Ps. However,
discussed at the end of Section 4, this will not affect the process of
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field screening and associated fluid local acceleration or decelera-
tion. The mirror instability develops only for the weakly magnetized
flows (Southwood & Kivelson 1993) – when the ratio of the plasma
pressure to the magnetic pressure is greater than unity. Let us apply
this criterion to the loaded flow considered in the previous sections.
The anisotropic pressure Ps is exactly the T 11

ld , with the index ‘1’
corresponding to the r-coordinate. Thus, it does not change with a
transformation to the fluid frame. In the fluid frame, the ratio of the
loaded plasma pressure to the magnetic pressure can be written as

βm = Ps

B ′2/8π
. (85)

For the simplest case of a pair created at rest with respect to nucleus,
the expression for Ps (23) gives

βm = 1

σ

nld

n
�, (86)

with the outflow stability condition βm < 1 being fulfilled for the
flow satisfying the condition δB/B < 1 (29). For the pure mass
loading (60),

βm = 2

3

1

σ

nld

n
γ ′

0β
′2
0 , (87)

and for pairs created with the c.m. moving faster than jet bulk
velocity (70),

βm = 1

σ

nld

n

[
2

3

�γ ′
0β

′2
0

�0
+ �0γ

′
0

2�

(
1 + β

′2
0

3

)]
. (88)

Equations (86)–(88) provide the criteria of the mirror stability of
the loaded flow; it is stable for βm < 1.

As the average velocity of created chargesis equal to the fluid ve-
locity, there is no current or beam of charged particles with respect
to the flow in the pair creation region that can give rise to the Bune-
man (Buneman 1959; Iizuka et al. 1979) and two-stream instability.
However, after the region of pair creation has been accelerated or
decelerated, the above-presented picture of a sharp boundary of the
uniform pair creation region may give rise to instabilities on the
boundary loaded–non-loaded flow. In this case, the two-stream in-
stability develops for the wave numbers k < ωP/v0, where ωP is
a plasma frequency and v0 is the velocity of loaded plasma with
respect to non-loaded plasma. The preliminary estimates give

v0 ≈ c��

�3
. (89)

Using the expression for �� (48) for the initial phase of the flow
loading, we obtain

v0 ≈ c
3

σ�

nld

n
. (90)

So, unstable wavelengths are

λ > 3
c

ωP

nld

n

1√
σ�

. (91)

The more realistic picture of gradual decrease of the loaded pair
number density towards the jet axis due to external photon absorp-
tion may probably eliminate this possible source of such instabil-
ities. However, this question deserves a separate analysis on the
basis of the proposed mass-loading description.

These preliminary estimates show that the process of charge load-
ing may lead to instabilities in the layer, where the mass and charge
loading occurs. The question of the possible impact of instabilities
on the proposed process will be addressed in the future work.

On the other hand, the same mechanism may account for the
sights of radiation. Indeed, due to external Comptonized hard and

external soft radiation and following pair creation, the local velocity
of a bulk flow motion changes. This leads to possible appearance of
internal shocks that in turn give rise to particle non-thermal accel-
eration, and following synchrotron radiation the external radiation
thus working as a trigger for the internal radiation site.
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A P P E N D I X A : AV E R AG I N G P RO C E D U R E

To average a τ -dependent function A(τ ) with respect to laboratory
time one has to use the following relation:

〈A〉 = 1

T

∫ T

0
A(τ )dt = 1∫ T ′

0 γ (τ )dτ

∫ T ′

0
A(τ )γ (τ )dτ. (A1)

Here T′ is an appropriate period in the loading particle rest frame.
The averaging procedure for components of the energy-

momentum tensor Tik is as follows. T ik
ld = mc2〈nrest

ld uiuk〉
contains the thermodynamical parameters in the particle rest frame.
For instance, the appropriate particle number density nrest

ld is re-
lated to the particle number density nlab

ld in the laboratory frame by
nlab

ld = γ (τ )nrest
ld . The components T ik

ld after the averaging procedure
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have to be written using the thermodynamical parameters in the jet
reference frame, i.e. nld – particle number density in the jet frame.
As nlab

ld = �nld, we write the energy-momentum tensor components
as

T ik
ld = mc2〈nrest

ld uiuk〉 = mc2�nld

〈
uiuk

γ (τ )

〉
. (A2)

Finally,

T ik
ld = mc2�nld

1∫ T ′
0 γ (τ )dτ

∫ T ′

0
ui(τ )uk(τ )dτ. (A3)

A P P E N D I X B: EN E R G Y-M O M E N T U M T E N S O R
F O R LOA D E D PA RT I C L E S

The non-zero components of the energy-momentum tensor T ik
ld =

〈mc2nrest
ld uiuk〉 in the laboratory reference frame obtained by the

averaging procedure are the following:

T 00
ld = mc2�3nld

(
1 + β4

2

)
, (B1)

T 02
ld = mc2�3nldβ sin α

(
1 + β2

2

)
, (B2)

T 03
ld = mc2�3nldβ cos α

(
1 + β2

2

)
, (B3)

T 11
ld = mc2�nld

β2

2
, (B4)

T 22
ld = mc2�3nld sin2 α

3β2

2
, (B5)

T 23
ld = mc2�3nld sin α cos α

3β2

2
, (B6)

T 33
ld = mc2�3nld cos2 α

3β2

2
. (B7)

The components of hydrodynamical four-velocities in the labo-
ratory frame are

U 0 = �, (B8)

U 1 = 0, (B9)

U 2 = β� sin α, (B10)

U 3 = β� cos α. (B11)

Lichnerowicz vector components are

bi =
{

0; 0; −B

�
sin α;

B

�
cos α

}
. (B12)

A P P E N D I X C : A L G E B R A I C E QUAT I O N O N
T H E SE L F - C O N S I S T E N T L O R E N T Z FAC TO R
O F T H E C H A R G E LOA D E D O U T F L OW

When the screening/enhancement of the fields takes place, it is
convenient to find the general algebraic equation for �̃. Let us
introduce the dimensionless factor F:

r⊥ = mec
2

eB̃
F . (C1)

The exact expression for the self-similar charge loaded flow velocity
is

β̃ = β
1 +

√
1 + Q/(�2 − 1)

1 +
√

1 + Q/�2
. (C2)

In a physically interesting case of Q/�2 � 1, the general algebraic
equation on �̃ for the given r⊥(F) is the following:

Q3�̃2 �6 + 7�4 − 10�2 + 4

32�4
(
�2 − 1

)3 + Q2�̃2 −3�2 + 2

8�2
(
�2 − 1

)2

+ Q�̃2 1

2
(
�2 − 1

) − �̃2 + �2 = 0, (C3)

where parameter

Q = 4

σ

nld

n
�̃F . (C4)

This is a third-order decomposition over Q/�2 which reproduces,
with high accuracy, the exact equation (33) for the special case of
pairs created at rest in a nucleus rest frame.
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