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ABSTRACT
We investigate the internal structure of the current sheet in the pulsar wind within force-free
and two-fluid MHD approximations. Within the force-free approximation we obtain general
asymptotic solution of the Grad–Shafranov equation for quasi-spherical pulsar wind up to the
second order in small parameter ε = (�r/c)−1. The solution allows an arbitrary latitudinal
structure of the radial magnetic field, including that obtained in the numerical simulations of
oblique rotators. It is also shown that the shape of the current sheet does not depend on the
latitudinal structure. For the internal region of the current sheet outside the fast magnetosonic
surface where the force-free approximation is not valid we use two-fluid MHD approximation.
Carrying out calculations in the comoving reference frame, we succeed in determining intrinsic
electric and magnetic fields of a sheet. It allows us to analyse time-dependent effects which
were not investigated up to now. In particular, we estimate the efficiency of the particle
acceleration inside the sheet. Finally, after investigating the motion of individual particles
in the time-dependent current sheet, we find the width of the sheet and its time evolution
self-consistent.
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1 IN T RO D U C T I O N

Particle acceleration in compact astrophysical objects is the classical
problem of modern astrophysics. Indeed, high-energy radiation in
the GeV and even TeV energy band is the smoking gun of the
existence of the relativistic particles with characteristic Lorentz
factors γ up to 104–105 (Levinson 2000; Aharonian et al. 2007).

Radio pulsars are thought to be the most effective accelerators in
space. Indeed, fast rotation of a neutron star (radius R ∼ 10–15 km
and periods P ∼ 1 s for ordinary pulsars) with surface magnetic
field B0 ∼ 1011–1013 G (and even 1013–1015 G for magnetars) in-
evitably results in the generation of the large enough electric field
E ∼ (�R0/c)B0. Here � = 2π/P is the neutron star angular veloc-
ity and R0 is the effective radius of the ‘central engine’; for radio
pulsars R0 ≈ (�R/c)1/2R is the polar cap radius. The energetics of
radio pulsars is determined by the potential drop Vtot ∼ ER0.

To determine the specific realization of the effective particle ac-
celeration self-consistently, it is necessary to know in detail the
structure of the neutron star magnetosphere and the pulsar wind.
Important analytical results were already obtained in the first quar-
ter of the century after radio pulsars were discovered. In particular,
the role of the process of the quantum-mechanical particle cre-
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ation was clarified (Sturrock 1971; Ruderman & Sutherland 1975;
Arons 1981). It showed the very possibility of the quasi-radial
magnetized wind transporting electromagnetic energy to infinity
(Michel 1973; Blandford 1975; Bogovalov 1999). It also predicted
the full screening of magnetodipole radiation by plasma filling the
neutron star magnetosphere (Beskin, Gurevich & Istomin 1993).
Later these results were confirmed with numerical simulations
of axisymmetric (Contopoulos, Kazanas & Fendt 1999; Timo-
khin 2006; Gruzinov 2005; Komissarov 2006) as well as inclined
magnetosphere (Kalapotharakos, Contopoulos & Kazanas 2012;
Tchekhovskoy, Spitkovsky & Li 2013).

As a result, at large enough distance from a neutron star r � RL

(RL = c/� is the radius of the light cylinder) the theory predicts
the quasi-radial outflow of the relativistic electron–positron plasma
along the poloidal magnetic field. As the total flux of the magnetic
field through the whole sphere is to vanish, such a structure is to
contain the current sheet separating outgoing and ingoing magnetic
fluxes. Up to the light cylinder the energy is mainly transported by
the electromagnetic field (i.e. by the flux of the Poynting vector
S = (c/4π)E × B), but somewhere at larger distances the electro-
magnetic energy flux is to be transferred into the particle energy.
Actually, the mechanism of this transformation is the main subject of
the particle acceleration theory. Up to now it remains an open ques-
tion as the ideal MHD predicts very ineffective particle acceleration
for quasi-radial outflow (Tomimatsu 1994; Beskin, Kuznetsova &
Rafikov 1998).
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Clearly, for the MHD outflow to exist, the electric field E has to
be smaller than the magnetic field B. In the pulsar wind it can take
place only if the total electric current I flowing in the magnetosphere
(and producing toroidal magnetic field Bϕ) is large enough so that at
the light cylinder the toroidal magnetic field Bϕ ≈ 2I/RLc becomes
as large as the electric field. Indeed, both Bϕ and E diminish with the
distance as r−1 (and, accordingly, S ∝ r−2). As the poloidal magnetic
field Bp for quasi-spherical structure decreases much faster (Bp ∝
r−2), the very MHD approximation E < B can be fulfilled only if
the total electric current I circulating in the pulsar magnetosphere
is as large as the so-called Goldreich–Julian current

IGJ = πR2
0j

A
GJ, (1)

where

jA
GJ = �B

2π
(2)

is the amplitude of the Goldreich–Julian current density.
Here it is necessary to stress one important point. The definition

of the Goldreich–Julian charge density

ρGJ = −�B
2πc

(3)

contains the factor cos θm, where θm is the angle between the vec-
tors � and B. As a result, for condition (1) to be fulfilled for large
enough inclination angles χ between � and the neutron star mag-
netic moment m, the current density j should be larger than the local
GJ current density jGJ = ρGJc near magnetic poles where θm ∼ χ ,
and

jGJ ≈ 3

2

�B

2π
cos θ. (4)

Thus, for quasi-radial MHD outflow to exist, the pair creation
mechanism has to support large enough longitudinal current j > jGJ

(4). At present, most scientists believe in this model (see e.g. Timo-
khin & Arons 2013), and here we follow this point of view as well.
On the other hand, effective particle acceleration can be realized if
the particle generation mechanism cannot support large enough lon-
gitudinal current j. It can take place in the vicinity of the so-called
light surface E = B, which inevitablly appears outside the light
cylinder for j < jGJ (Beskin et al. 1993; Beskin & Rafikov 2000).
Recently, the possible existence of such effective particle ac-
celeration region was demonstrated by analysing the TeV time-
dependent radiation of the Crab pulsar (Aharonian, Bogovalov &
Khangulyan 2012).

Returning to standard model of the pulsar wind, let us recall
that it contains ‘striped’ current sheet separating ingoing and out-
going magnetic fluxes. This current sheet was predicted analyt-
ically (Coroniti 1990; Michel 1994; Bogovalov 1999) and later
was confirmed in numerous force-free (Contopoulos et al. 1999;
Spitkovsky 2006; Kalapotharakos et al. 2012), MHD (Komis-
sarov 2006; Tchekhovskoy, McKinney & Narayan 2009) and even
PIC (Cerutti et al. 2015) simulations.1 And it has long been un-
derstood that this current sheet can be the domain of very effec-
tive particle acceleration (Lyubarsky & Kirk 2001a; Zenitani &
Hoshino 2007; Arons 2012; Contopoulos, Kalapotharakos &
Kazanas 2014). On the other hand, the self-consistent model of the
internal structure of this ’striped’ current sheet was not constructed.

The paper is organized as follows. We start with the discussion
of force-free asymptotic behaviour of the pulsar wind in Section 2.

1 Nowhere any restrictions on the longitudinal current were imposed.

Here we obtain simple asymptotic solution of the Grad–Shafranov
equation for quasi-spherical pulsar wind. In particular, this solu-
tion can describe the latitudinal structure of the radial magnetic
field obtained numerically for the oblique rotator (Tchekhovskoy,
Philippov & Spitkovsky 2016). We also show that the shape of the
current sheet does not depend on the latitudinal structure. Then in
Section 3 we determine the main properties of the internal regions of
a current sheet where the force-free approximation is not valid. Us-
ing two-fluid MHD approximation and carrying out calculations in
the comoving reference frame we determine electric and magnetic
field structures as well as the velocity component perpendicular to
the sheet. This allows us to estimate the efficiency of particle accel-
eration. After that we find the self-consistent solution for the current
sheet evolution. Section 4 is devoted to numerical simulation which,
as will be shown, fully support our analytical asymptotic solutions.
Finally, in Section 5 we discuss possible astrophysical applications
of our consideration.

2 FO R C E - F R E E A S Y M P TOT I C B E H AV I O U R
O F T H E PU L S A R W I N D

2.1 Basic equations

In this section, we discuss the asymptotic behaviour of the pulsar
wind using well-known approach of the so-called pulsar equation
(Mestel 1973; Okamoto 1974)

−
(

1 − �2
F


2

c2

)
∇2� + 2

1




∂�

∂

+ 
 2�F

c2
(∇�)2 d�F

d�

− 16π2

c2
I

dI

d�
= 0. (5)

This equation resulting directly from Maxwell equations describes
axisymmetric stationary electromagnetic fields,

E = − �F

2πc
∇�, (6)

B = ∇� × eϕ

2ππr sin θ
− 2I

cr sin θ
eϕ (7)

within the force-free approximation. Here � = �(r, θ ) is the mag-
netic flux, and two integrals of motion �F = �F(�) and I = I(�)
are the so-called field angular velocity (more exactly, the angular
velocity of a test charged particle drifting in the crossed electro-
magnetic fields) and the total current inside the magnetic tube,
respectively. Below, for simplicity, we consider the case �F = �

only. It corresponds to the fast enough rotation of the neutron star
when the potential drop in the inner gap Vgap is much smaller than
the maximum value Vtot.

The first solution of the pulsar, equation (5), containing radial
wind was obtained by Michel (1973). He demonstrated that the
‘split monopole’ magnetic field corresponding to magnetic flux,

�(r, θ ) = �tot(1 − cos θ ), θ < π/2, (8)

�(r, θ ) = �tot(1 + cos θ ), θ > π/2 (9)

is the exact solution of the pulsar equation if the additional relation

4πI (�) = �F

(
2� − �2/�tot

)
(10)

holds. In this case

Br = BL
R2

L

r2
sign(cos θ ), (11)
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Bϕ = Eθ = −BL
RL

r
sin θ sign(cos θ ), (12)

where BL = Bp(RL,π/2). This solution describing the axisymmet-
ric case is called the ‘split-monopole’ one as it contains the current
sheet in the equatorial plane separating ingoing and outgoing mag-
netic fluxes.

Later Ingraham (1973) found more general asymptotic solution,
i.e. the solution in the limit r → ∞. He has shown that in this limit
an arbitrary function � = �(θ ) remains the solution of the pulsar
equation (5) if

4πI (θ ) = �F sin θ
d�

dθ
. (13)

According to equation (7), this implies that in the asymptotic limit r
→ ∞ any θ -dependence of the poloidal magnetic field Bp = Bp(θ )
can be realized. Here we have to stress that relation (3) for charge
density remains true for monopole structure (11)–(12) only. In gen-
eral case,

ρe = − �F

4π sin θ

d

dθ

(
sin θ

d�

dθ

)
. (14)

As one can easily check using equations (6)–(7), both conditions
(10) and (13) correspond to the clear relation Eθ = Bϕ .

Finally, it was found that the appropriate solution can be con-
structed for the oblique rotator as well. According to Bogovalov
(1999), the ‘inclined split monopole’

Bp = BL
R2

L

r2
sign(
), (15)

Bϕ = Eθ = −BL
RL

r
sin θ sign(
), (16)

where now


 = cos θ cos χ − sin θ sin χ cos [ϕ − � (t − r/c)] , (17)

and χ is the inclination angle, is the exact solution of the pulsar equa-
tion as well. In the polar regions θ < π/2 − χ and θ > π/2 + χ

this solution coincides with the time-independent Michel solutions
(11)–(12), but in the equatorial region π/2 − χ < θ < π/2 + χ all
the field components change the signs at the current sheet locating
at the position 
 = 0.

2.2 Asymptotic behaviour

In this section we are going to generalize the solutions mentioned
above to substantiate the result of numerical simulation. Indeed, as
shown by Tchekhovskoy et al. (2016), for large enough inclination
angle χ > 30◦ the ϕ-average poloidal magnetic field depends on
the angle θ as

〈Bp〉ϕ ∝ sin θ. (18)

For this reason, the structure of the solution with θ -dependent
poloidal magnetic field (13) is to be considered in more detail.

As we are mainly interested in the asymptotic behaviour r � RL,
one can search a solution of the pulsar equation (5) in the form

�(r, θ ) =
∞∑

n=0

�n(θ )

(
RL

r

)2n

sign(cos θ ). (19)

As was already stressed, the function �0(θ ) describing the asymp-
totic magnetic field can be arbitrary if the condition (13), 4πI (θ ) =

Figure 1. The only solution �1(θ ) of equation (24), which has no singu-
larity at θ = 0 and θ = π/2. The presence of finite solution implies that the
disturbance of magnetic flux function decreases as R2

L/r2.

�F sin θ d�0/dθ holds. According to equations (6)–(7), we obtain
in the zero approximation

Br = BL

(
RL

r

)2
F (θ )

sin θ
sign(cos θ ), (20)

Bϕ = Eθ = −BL
Rs

r
F (θ )sign(cos θ ), (21)

Bθ = Eϕ = Er = 0, (22)

where F (θ ) = (4/π)� ′
0/�tot, �tot = �0(π/2), and primes indicate

the θ -derivatives, e.g. � ′
0 = d�0/dθ . The Michel monopole so-

lution corresponds to F(θ ) = sin θ . As to equation for the first
disturbance �1(θ ), it looks like

1

sin θ

d

dθ

(
sin θ

d�1

dθ

)
−

(
cot2 θ − 3 + 3

F ′

F
cot θ + F ′′

F

)
�1

= �tot
1

sin θ

d

dθ

(
F

sin θ

)
. (23)

In particular, for F(θ ) = sin θ we obtain �1(θ ) = 0, i.e. pure radial
flow. On the other hand, for � ′

0(θ ) = �tot sin2 θ (and, hence, Br ∝
sin θ ) we obtain

1

sin θ

d

dθ

(
sin θ

d�1

dθ

)
− (

9 cot2 θ − 5
)
�1 = 2�tot cot θ. (24)

In Fig. 1 we show the only solution �1(θ ) of equation (24), which
has no singularity at θ = 0 and θ = π/2; these two conditions just
determine the solution of this equation. As we see, this function is
finite and, hence, the disturbance of the radial poloidal magnetic
field decreases as R2

L/r2. We will use this property in what follows.
Now, to obtain the fields in the oblique case we use the procedure

similar to the one applied in Bogovalov (1999). Instead of multi-
plying our axisymmetric solution by sign(cos θ ) we will multiply it
by sign(
). As one can easily check, the appropriate fields satisfy
Maxwell equations as well except for the current sheet position 
(r,
θ , ϕ) = 0. Thus, one can conclude that the shape of the current sheet
does not depend on the latitudinal structure of the magnetic field.

Finally, using the definitions (20) and (21), one can obtain the
following very simple relation between the latitudinal structure of
the radial magnetic field Br(θ ) and the pulsar wind energy flux
S(θ ) = cBϕEθ/4π

S(θ ) ∝ sin2 θB2
r (θ ). (25)
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The same expression for Poynting flux was also obtained by
Tchekhovskoy et al. (2016). For Br = const. we return to the ex-
pression S(θ ) = sin 2θ , which was widely used in the literature
(Bogovalov & Khangoulyan 2002; Komissarov & Lyubarsky 2003).
On the other hand, for Br(θ ) ∝ sin θ we have

S(θ ) ∝ sin4 θ, (26)

i.e. exactly what was obtained numerically by Tchekhovskoy et al.
(2013). Of course, as in equation (18), it concerns ϕ-averaging
values. Nevertheless, this result implies that even very simple ana-
lytical consideration provides good enough description of the main
characteristics of the pulsar wind obtained numerically.

3 C U R R E N T S H E E T I N T H E C O M OV I N G
R E F E R E N C E F R A M E

3.1 MHD approximation

There are two reasons why the force-free model considered above
is too simple to describe the main properties of the current sheet.
First, in this model the sheet is infinitely thin. Second, within the
force-free approximation mass-less particles move with the velocity
of light. As one can see from equation (17), the current sheet moves
with the same velocity as well, which prevents us from considering
its internal structure in detail.

For this reason below, we try to pass to the reference frame co-
moving with the outflowing plasma. It helps us to separate the intrin-
sic processes inside the current sheet from the common outflowing
motion. Certainly, within the force-free approximation this boost is
impossible. For this reason in what follows we use more general
MHD approximation formulated in Beskin & Rafikov (2000) (see
also Beskin, Zakamska & Sol 2004).

Remember that to describe magnetically dominated MHD out-
flow it is very convenient to introduce two dimensionless parame-
ters, namely Michel magnetization parameter, σ M, and multiplicity
parameter, λ (Beskin 2010). Here

σM = e��tot

8πλmec3
, (27)

where �tot = �(π/2) is the total magnetic flux through the upper
hemisphere, and

λ = ne

n0
GJ

, (28)

where n0
GJ = �Bp/2πc|e| is the amplitude of the Goldreich–Julian

number density. For ordinary pulsars, σ M ∼ 103–104 and λ ∼ 103–
104, and only for the fast young pulsars (e.g.,Crab, Vela), σ M ∼ 105–
106 and λ ∼ 104–105. In the force-free limit me → 0 we have σ M

→ ∞. On the other hand, for finite σ M the particle velocity is
smaller than that of light (see below). In addition, we suppose that
the injection Lorentz factor γ in ∼ 102 is constant for all outflowing
region.

As a result, according both to the theory (Beskin, Kuznetsova &
Rafikov 1998; Prokofev, Arzamasskiy & Beskin 2015) and nu-
merical simulation (Bogovalov & Tsinganos 1999; Bucciantini
et al. 2006), the quasi-radial MHD flow is to intersect the fast
magnetosonic surface at the distance

rF = min(σ 1/3
M sin−1/3 θ,

√
σM/γin) RL, (29)

the Lorentz factor at this surface being

γF = max
(
σ

1/3
M sin2/3 θ, γin

)
. (30)

For γin � σ
1/3
M (slow rotation) it is necessary to use the second

expressions, while for γin � σ
1/3
M (fast rotation) they realized in the

narrow cone θ < γ 3/2
in σ

−1/2
M near the rotational axis only; for most

angles the first expressions are to be used.
It is very important that for both fast and slow rotations outside

the fast magnetosonic surface there are actually no collimation and
particle acceleration. More exactly,

γ ≈ σ
1/3
M sin2/3 θ log1/3(r/rF) (31)

for fast and γ F ≈ γ in for slow rotation (Tomimatsu 1994; Beskin
et al. 1998; Prokofev et al. 2015). This implies that with the loga-
rithmic precision one can believe that at large distances r � rF the
particles move with constant velocity vr < c exactly corresponding
to the drift velocity in Udr/c = E/B (Tchekhovskoy et al. 2009;
Beskin 2010). This property just helps us to move into the reference
frame comoving with a particular part of the wind (at some constant
θ ).

3.2 Fields in the comoving reference frame

3.2.1 Introductory remarks

As was already stressed, the first attempts in describing the inter-
nal structure of the ‘striped’ pulsar wind were done by Coroniti
(1990) and Michel (1994). They based their analysis on magnetic
reconnection.

The next step was made by Lyubarsky & Kirk (2001a) describ-
ing the internal structure of the moving current sheet by introducing
‘fast’ and ‘slow’ variables allowing them to consider the current
sheet moving radially with the velocity vsh < c. But they did not
consider internal structure of a sheet postulating actually zero mag-
netic field inside it. Later, the following electromagnetic fields were
considered (Pétri 2013)

Br (r, θ, ϕ, t ′) = BL
R2

L

r2
tanh

(
RL

�lab

1

)
, (32)

Bϕ(r, θ, ϕ, t ′) = −BL

β

RL

r
sin θ tanh

(
RL

�lab

1

)
, (33)

Eθ (r, θ, ϕ, t ′) == −BL
RL

r
sin θ tanh

(
RL

�lab

1

)
. (34)

Here now


1 = cos θ cos χ − sin θ sin χ cos
[
ϕ − �

(
t ′ − r/βc

)]
, (35)

where t′ is the time in the laboratory reference frame, β = vsh/c < 1
and the function tanh (...) was taken for clear historical reason2 (this
function can be arbitrary).

Unfortunately, these fields cannot be considered as good enough
zeroth approximation as they have no force-free limit inside the
sheet with finite thickness. Indeed, as can be easily checked, the θ

and ϕ dependencies of the function 
1 (35) deny the existence of θ

and ϕ components of the current density inside the sheet even in the
force-free approximation. On the other hand, in this limit jr = ρec,
and, hence, to support the components jθ and jϕ the particle velocity
is to be larger than that of light. By the way, Lyubarsky & Kirk
(2001a) did not taken into consideration the radial component of
the Maxwell equation ∇ × B = . . . (it was postulated that the radial

2 This function corresponds to well-known Harris (1962) solution.
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component of the current density jr = 0 in spite of [∇ × B]r �= 0),
so their analysis cannot be considered as self-consistent as well.

Here we present another approach to this problem carrying out
calculations in the reference frame moving radially with the current
sheet. It allows us to avoid the leading components of electromag-
netic fields resulting in the common drift motion. Our considera-
tion is based on the another exact force-free solution obtained by
Lyutikov (2011)

Br = BL

(
RL

r

)2

; (36)

Bϕ = Eθ = −BLRL

r
sin θf (r − ct ′), (37)

where f (. . . ) is again an arbitrary function. Having no dependence
on θ and ϕ, these fields are in agreement with the condition j =
ρec er . We can use this solution for inclined rotator because the
shape of the current sheet in this case is similar to the spherical
wave (see, e.g. Kalapotharakos et al. 2012).

Of course, it is necessary to stress that this solution contains no
sign change of the radial component of the magnetic field Br. On
the other hand, as already mentioned above, outside the fast magne-
tosonic surface r � rF ∼ σ

1/3
M RL (29) both the disturbance of the

monopole poloidal magnetic field resulting from the MHD distur-
bances (Beskin et al. 1998) and the disturbances (19) connecting
with θ -dependence of the poloidal field have the same smallness
∼σ

−2/3
M at the fast surface and, hence, can be neglected.

For this reason, in what follows we put Br = 0. As is well known,
this approximation is good enough outside the fast magnetosonic
surface r > rF and widely used in analysis of the pulsar wind
(Lyubarsky & Kirk 2001a; Brennan & Gralla 2014). Indeed, ac-
cording to equations (29)–(30), for fast rotator in the comoving
reference frame the toroidal magnetic field B ′

ϕ = Bϕ/γ becomes
larger than poloidal one B ′

r = Br just outside the fast surface; for
slow rotator it takes place even at smaller distances.

As a result, we can modify now this solution for arbitrary
θ -dependence of the poloidal magnetic field Br(θ ), which, as was
already stressed, better corresponds to the real structure of the pul-
sar wind. For f ≡ −tanh the fields in the laboratory frame (r, θ , ϕ,
t′) can be presented as

Bϕ(r, θ, t ′) = 1

β

BLRL

r
F (θ ) tanh

(
r − βct ′

�lab

)
, (38)

Eθ (r, θ, t ′) = BLRL

r
F (θ ) tanh

(
r − βct ′

�lab

)
, (39)

where �lab is a current sheet thickness in the laboratory refer-
ence frame, and F(θ ) now is the arbitrary function. As was already
stressed, the parameter β = Eθ /Bϕ can be considered here as a
constant.

Accordingly, the charge density in this frame is equal to
Goldreich–Julian charge density:

ρe = − BLRL

4πr2 sin θ

d[F (θ ) sin θ ]

dθ
tanh

(
r − βct ′

�lab

)
= nGJ e, (40)

but the current density is now equal to

j = ρe

β
. (41)

This implies that within the MHD approximation the veloci-
ties of electron and positron components are to be different. In

Figure 2. Inertial reference frame (x, y, z, t) moving radially with velocity
V = βc.

magnetically dominated case, one can seek the first-order correc-
tions in the following form:

v±
r /c = 1 − ξ±

r ; v±
θ /c = ξ±

θ ; ˜v±
ϕ /c = ξ±

ϕ . (42)

As the particle number densities can be now written as

n± = nGJ

[
λ ∓ 1

4
D̂θF (θ )

]
, (43)

where D̂θF (θ ) = F ′(θ ) + F (θ ) cot θ (e.g. D̂θ sin θ = 2 cos θ ), one
can obtain using the definition of the current density j = en+v+

r −
en−v−

r

ξ±
r = 1 − β ± 1

2λγ 2β
, (44)

or

v±
r /c = β ∓ 1

2λγ 2β
. (45)

Here γ = (1 − v2/c2)−1/2 is the Lorentz factor and λ again is the
multiplicity parameter.

3.2.2 Comoving reference frame – orthogonal case

As was already stressed, important property of the solutions (38)–
(39) presented above is that the parameter β can be considered
as a constant. Thus, the reference frame moving radially with the
velocity V = βc is the inertial one. In order to study the field
structure in this reference frame moving with the current sheet,
we need to express the fields in Cartesian coordinates and make a
Lorentz transform:

B ′
x = Bx ; B ′

y = �(By + βEz); B
′
z = �(Bz − βEy), (46)

E′
x = Ex ; E′

y = �(Ey − βBz); E
′
z = �(Ez + βBy). (47)

Here and below � = (1 − β2)−1/2 is the boost Lorentz factor, and
the values without prime correspond to the reference frame moving
radially with the x-axis directed along the radius vector er and the
y-axis along eϕ (see Fig. 2). As a result, near the origin of the
reference frame moving radially with the velocity V = βc (and for
f ≡ −tanh ) the first-order fields look like

By(x, y, z, t) = B0
RL

ct

(
1 − z2

c2 t2

)
tanh

(
x

��lab

)
, (48)
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Ex(x, y, z, t) = B0
RLz

c2t2
tanh

(
x

��lab

)
. (49)

Here x = �(r − βct′), t = t′/� is the time in the comoving reference
frame, and

B0 = BL

β2�2
F (θ ), (50)

which now can be considered as a constant. Note that this expression
has �2 instead of � in denominator since B0 actually represents
magnetic field at fast magnetosonic surface in comoving frame.
Fast magnetosonic surface corresponds to the time t ′0 = rF/βc ⇒
t0 ≈ RL/c. Finally, as z � ct, we do not include the factor below
(1 − z2/c2t2) into consideration.

Further, as one can directly check, Maxwell equation c∇ × E =
−∂B/∂t is automatically fulfilled. Finally, for another Maxwell
equation c∇ × B = ∂E/∂t + 4π j to be valid, two-fluid MHD con-
sideration is necessary. This question will be considered in detail
in Section 4. At this moment we only stress that the charge den-
sity along the boost axis (i.e. x-axis) is equal to 0, and the particle
velocities after the Lorentz transform become

v±
x

c
= ∓ 1

(2λ ± 1)β
≈ ∓ 1

2λβ
. (51)

Expressions (48)–(49) are our main intermediate result giving
zero approximation for the internal structure of the quasi-spherical
current sheet in its comoving reference frame. As we see, this so-
lution is essentially time dependent. Indeed, r−1 diminishing of
the toroidal magnetic field Bϕ in the pulsar wind transforms into
t−1 time dependence in the comoving reference frame. As will be
shown below, this results in a set of new effects which does not exist
in classical time-independent configurations.

3.2.3 Comoving reference frame – aligned case

Similarly, one can consider the internal structure of the current
sheet for the axisymmetric case when the current sheet locates in
the equatorial plane. After passing into comoving reference frame
(the calculations are quite similar to Section 3.2.2) we obtain for
the leading components of electromagnetic field (θ = π/2):

By(x, y, z, t) = B0
RL

ct
tanh

(
z

��lab

)
, (52)

Ex(x, y, z, t) = B0
RLz

c2t2
tanh

(
z

��lab

)
. (53)

These fields differ from equations (48)–(49) by z (not x) coordinate
perpendicular to the sheet plane.

It is necessary to stress that recent PIC simulations of the ax-
isymmetric pulsar magnetosphere (Cerutti et al. 2015) demonstrate
non-stationarity of the equatorial sheet so that a high-amplitude
wave is generated just outside the light cylinder. In other words,
axisymmetric equatorial sheet actually cannot exist. Nevertheless,
we consider this case as well.

4 IN T E R NA L ST RU C T U R E O F
T I M E - D E P E N D E N T C U R R E N T S H E E T

In this section, we discuss in detail the structure of electromagnetic
fields and particle drift motion for time-dependent current sheet not
far from the fast magnetosonic surface. In this domain the time-
dependent effects are most pronounced. Most of this section is

devoted to discussion of orthogonal case, while aligned case is
discussed in the appendix.

In our analysis, we do not consider the important effects related
to different instabilities (e.g. tearing and drift-kink) which can dras-
tically disturb the structure of a sheet. The inclusion of these effects
is beyond the scope of this study and we leave it for the following
paper.

Note that, for simplicity we use f(x) = tanh (x) form of the current
sheet (Harris sheet), everywhere except for Section 4.1. The results
can be easily applied to any physically reasonable form, i.e. odd
function with

lim
x→±∞

f (x) → ±1

and f (0) = 0.

4.1 Accelerating electric field

As was already stressed, solutions (48)–(49) constructed above cor-
respond to the constant width �lab of the current sheet separating
time-dependent magnetic fluxes. To describe the time evolution of
the current sheet width �lab(t) (which is one of the main goals
of this paper), it is necessary to include into accelerating another
component of the electric field, Ez.

To show this, it is convenient to rewrite the relations (48)–(49) in
the form

By(x, y, z, t) = B0
RL

ct
h(x, t), (54)

Ex(x, y, z, t) = B0
RLz

c2t2
h(x, t), (55)

where h(x, t) = f[x/�(t)]. Then, we can rewrite Maxwell equation
c∇ × E = −∂B/∂t as

∂Ez

∂x
= B0

RL

c2t

∂h

∂t
. (56)

It gives

Ez = B0
RL

c2t

∂

∂t

⎛
⎝

x∫
∞

h(x ′, t)dx ′

⎞
⎠ . (57)

Further, as f(x) and h(x, t) are both odd functions of x, one can
choose the integrating constant for Ez ∝ ∫

h(x′, t)dx′ to be even
function with clear boundary conditions Ez( ± ∞) = 0. Clearly,
in this case we obtain Ez(x = 0) �= 0 near the centre plane of the
current sheet. Finally, Maxwell equation c∇ × B = ∂E/∂t + 4π j
now looks like

B0
RL

ct

∂h

∂x
= 1

c

∂Ez

∂t
+ 4π

c
jz. (58)

For Harris current sheet one can obtain the following expressions:

By = B0
t0

t
tanh

x

�(t)
, (59)

Ex = B0
t0z

ct2
tanh

x

�(t)
, (60)

Ez = B0
t0�

′(t)
ct

{
log

[
2 cosh

x

�(t)

]

− x

�(t)
tanh

x

�(t)

}
. (61)
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Figure 3. The acceleration of particles along the sheet by an additional
electric field for different expansion parameters κ . Solid lines correspond
to the time dependence of particle velocity, and dashed lines represent
analytical prediction (63).

As we see, time dependence of the current sheet thickness �(t)
inevitably results in the appearance of the non-zero electric field
Ez along the sheet which is larger than the magnetic one near the
zero surface. Thus, the evolution of the current sheet width and the
problem of particle acceleration cannot be considered separately.

Acceleration of particles could be estimated by considering parti-
cles trapped deep inside the current sheet x � �. For such particles,
the change of z-component of momentum due to Ez could be found
from the solution of

ṗz ≈ eB0
t0�

′(t)
ct

log(2), (62)

giving the acceleration

δpz(t) =
t∫

t0

ṗzdt = κ log(2)

κ − 1

eB0�0

c
[(t/t0)κ−1 − 1]. (63)

Here �′(t) = d�/dt, and we assume power-law dependence for
the current sheet thickness �(t) ∝ tκ . Equation (63) is valid for
κ �= 1. For κ = 1, integration (63) gives logarithmic divergence.
For such case we assume δpz ≈ eB0�0/c = const. For κ < 1,
δpz asymptotically goes to constant. In this case we also set δpz

≈ eB0�0/c = const. On the other hand, for κ > 1 momentum
grows as tκ − 1 with time. Combining all the expressions, one can
approximate the acceleration of particles in the current sheet as

δpz(t) = eB0�0/c, κ ≤ 1 (64)

δpz(t) = eB(t)�(t)/c, κ > 1 (65)

where B(t) is the value of magnetic field outside of the current sheet
B(t) = B0(t0/t).

In Fig. 3, expression (63) is compared with the exact solution of
particle equations of motion in fields (59)–(61) for different κ . The
numerical solution is in good agreement with analytical prediction,
except for κ = 0.5. The small difference between analytical and
numerical solution in κ = 0.5 case is examined in Fig. 4. All particles
examined for this figure start with z0 = 0, vx = 0, vz = ωB�0

and with different initial x0. An analytical value δvz = log 2ωB�0

corresponds to the limit of this curve at x0 → 0. For larger x0,
acceleration is larger, but order of magnitude remains the same.
We thus conclude that estimations (64)–(65) are in good agreement
with numerical solution.

Figure 4. Dependence of the total acceleration in the sheet with κ = 0.5
on the initial coordinate of the particle. Acceleration increases until
x0/�0 ∼ 2.5. It corresponds to the last initially trapped orbit. Particles
with larger x0 move outside the sheet until getting trapped, and the total
change in velocity decreases.

4.2 Particle drift outside the current sheet

In this section, we discuss the main manifestations of time-
dependent effects in the proper reference frame of the current sheet.
First of all, in the comoving reference frame the particles experience
drift motion outside the current sheet (x � � for orthogonal case
and z � � for aligned case). The fastest component of such motion
is the z component of electric drift

Uz = c
ExBy

B2
y

= z

t
. (66)

This velocity exactly corresponds to the radial divergence
of the flow due to radial expansion. Since within our ap-
proximation z � ct, the drift velocity of particles remains
non-relativistic.

The drift velocity Uz is directed along the current sheet in or-
thogonal case, and out of the sheet in aligned case. In orthogonal
case it implies that the particle, which is outside of the current sheet
initially, will move along the sheet until its orbit starts to intersect
the midplane of the sheet. After this moment the particle is trapped
and no longer drifts. On the other hand, in aligned case, particles
drift away from the sheet. If current sheet expands slowly enough,
such particles will never get trapped. Similarly, the particles, which
are initially trapped might escape the sheet and start to drift with
velocity U align

esc = �(tesc)/tesc, where tesc is the time when particle
escapes the sheet. One can easily find that escape can only occur if
�(t) expands slower than linear.

As shown in Section 4.1, in orthogonal case the additional time
dependence of a sheet width leads to additional electric field dimin-
ishing exponentially outside the sheet: Eadd ∝ exp ( − x/�). Since
for particles outside the sheet � � x, we can neglect this electric
field. The same remains true for gradient drift.

Further, Larmor radius of particles changes due to the conserva-
tion of the first adiabatic invariant p2

⊥/By ≈ const. This connection
allows us to evaluate the dependence of gyroradius on time (cf.
Lyubarsky & Kirk 2001a)

RL(t) = RL(t0)

(
t

t0

)1/2

. (67)

Such a dependence shows that the gradient drift (or any other drifts
except electric) is not just significantly smaller than z component of
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electric drift, but also smaller compared to Larmor radius growth.
For orthogonal case equations (66) and (67) indicate that any particle
that initially is outside the sheet eventually gets trapped inside the
sheet.

Now we can compare an average gyroradius of particles with
the thickness of sheet. If gyroradius of a particle is much smaller
than the width of the current sheet, it is possible to use the drift
approximation. The only component of the drift velocity having x
component is the electric drift Ux = −cEzBy/B2

Ux = −�′(t)
{

log [2 cosh(x/�)]

tanh(x/�)
− x/�

}
, (68)

In particular, for x � �0 we have

Ux = − log(2)
�′(t)�(t)

x
. (69)

Certainly, it is impossible to use this evaluation in the very centre
of a sheet x → 0 where Ez > By.

As one can see, for � � RL, when there are a lot of particles with
RL � |x| < �, which do not cross the null surface, these particles
will drift towards x = 0. This results in slow collapse of the sheet
until the current sheet becomes thin enough so RL ∼ �.

On the other hand, it is impossible to sustain the Harris cur-
rent sheet if RL � � as the particles in such a sheet spend
most of their time in the region |x| > �, i.e. outside of the
sheet. This leads to the conclusion that in realistic current
sheet RL ∼ �.

Finally, time dependence of the current sheet results in the
trapping of particles in the vicinity of the null surface. We il-
lustrate this effect in Fig. 5 where we show the trajectories of
drifting particles outside the sheet. All particles start with the
same velocity and x0, but with different z0. Points correspond to
the positions of particles at the same moment in time showing
that the time required for particle to get trapped is almost in-
dependent of z0, and is determined by the x component of drift
velocity (68).

4.3 Self-consistent solutions for non-relativistic particles

In this section, we find exact solution for a particle trapped deep
inside the orthogonal current sheet x � �. Surprisingly, the equa-
tions for non-relativistic particles could be integrated exactly. For
relativistic particles not only equations could not be solved analyti-
cally, but also the actual approximation x, z � ct breaks down and
the fields (59)–(61) could not be used.

In the orthogonal case, we can use expressions (59)–(61) for
electromagnetic fields:

By = B0
t0

t
tanh

x

�(t)
, (70)

Ex = B0
t0z

ct2
tanh

x

�(t)
(71)

Ez = κ
B0t0�(t)

ct2

{
log

[
2 cosh

x

�(t)

]
− (72)

x

�(t)
tanh

x

�(t)

}
, (73)

Figure 5. Trapping of particles in the orthogonal current sheet for different
starting positions outside the sheet. The points correspond to the positions
of particles at the same moment in time. As x-positions of these points are
close, the time until particles get trapped is the same for particles with the
same initial x.

where we again assume �(t) ∝ tκ . After substitution of these ex-
pressions into equation of motion we obtain the following system
of equations:

z̈ = eB0t0

mect

{
ẋ tanh

x

�(t)
+ (74)

+ κ
�(t)

t
log

[
2 cosh

x

�(t)

]
− κ

x

t
tanh

x

�(t)

}
,

ẍ = eB0t0

mect2
tanh

x

�(t)
(z − żt). (75)
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Figure 6. Comparison of numerical solution for motion of particle inside
the sheet (blue oscillating line) with analytical prediction (82). Red asymp-
totic line shows the dependence of amplitude of particle oscillations on time
xmax = x0t

1/2/t
1/2
0 .

Integrating the first equation now, one can obtain

z − żt = −�(t)� log

[
2 cosh

x

�(t)

]
+ C (76)

corresponding to conversation of the following invariant

I = mez − Pzt. (77)

Here � = ωBt0 (ωB = eB0/mec is cyclotron frequency), and
Pz = pz + eAz is generalized momentum. This integral remains
constant for non-relativistic case only. Further, substituting equa-
tion (76) into equation (75) we obtain

ẍ = −�2 �(t)

t2
tanh

x

�(t)
log

[
2 cosh

x

�(t)

]
. (78)

Here we neglect the constant C in comparison with �(t) which is
possible for expanding sheet.

To evaluate the asymptotic behaviour of non-linear equation (78)
(which has no exact analytical solution) we present the coordinate
x(t) in the form x(t) = �(t)S(t) where S(t) is a restricted function.
After substituting this into equation (78) we obtain

t2S ′′ + 2κtS ′ + κ(κ − 1)S = −�2 tanh S log[2 cosh S], (79)

where primes indicate derivatives over t.
Expanding now RHS into Maclaurin series (which is possible for

S � 1) we obtain for the leading term

t2S ′′ + 2κtS ′ + log(2)�2S = 0. (80)

Here we suppose that � � 4λσ M � 1. Equation (80) is linear and
have the following solutions

S± = S0 t−(2κ−1)/2 cos
[√

log(2)� log(t) + ϕ±
]
. (81)

As a result, it becomes clear that unless κ �= 1/2 the expansion
of the sheet doesn’t follow the expansion of particle trajectory, for
which we have

x(t) ≈ x0

(
t

t0

)1/2

cos
[
α(x0)� log(t) + ϕ0

]
(82)

for arbitrary oscillation amplitude x0. The constant α(x0) slowly
varies between

√
log(2) at x0 � � and unity for x0 � �. An

analytical solution (82) is compared with numerical solution in
Fig. 6 demonstrating their good agreement. It is also clear from
equation (81) that the growth rate proportional to square root of
time is a solution for arbitrarily expanding sheet.

4.4 Current sheet thickness and particle acceleration

In the previous section, we have found self-consistent solution for
internal structure of current sheet; however, in this section we will
show that such solution cannot be asymptotic one. Below we eval-
uate the current sheet thickness based on its global structure. We
will explore MHD equations in order to find asymptotic behaviour
of current sheet.

Starting from Faraday’s law

B

�
= 8πnine

vz

c
(83)

and combining it with the definition of multiplicity λ, we can ex-
press thickness of the current sheet through vz(t)/c and nout/nin

parameters:

� = RL

t

t0

�

4λ

c

vz

nout

nin
. (84)

Here nout and nin refer to particle number density outside and inside
the current sheet, respectively.

It is clear that asymptotically vz/c grows up to a constant value.
For vz(∞)/c < 1 we get non-relativistic case, which correspond to
particle motion discussed above. It is possible to determine value
of δpz � eB�/c:

δpz = mec�
2 c

vz

nout

nin
. (85)

This expression could be used for κ ≥ 1 to get δpz(t), or for κ < 1
to get δpz(∞). In the latter case, the values of vz, nin and nout should
be taken at t = t0.

From equation (85) one can see that if the sheet is relativistic
(vz ∼ c) and nin ∼ nout, the particle can reach a Lorentz factor
γe ∼ �2 = σ

2/3
M . It is obvious that such rapid acceleration breaks

some of the assumption made in the beginning (e.g. the Lorentz
factor of the current sheet in the laboratory frame is only �). On the
other hand, one may expect that in realistic sheet nin � nout, so γ e

� �2.
Further, as shown earlier, the sheet with � � RL collapses.

Under this condition the force balance perpendicular to the sheet
plane can be written as

B2

8π
= ninEk, (86)

where Ek(t) is the particle thermal kinetic energy inside the sheet.
Using now the definition (27) for magnetization parameter σ M, one
can rewrite this relation in a simple form

Ek

mec2
= σM

�

nout

nin
. (87)

As we see, non-relativistic approximation inside the sheet is valid
for high enough number density

nin

nout
> σ

2/3
M . (88)

As a result, comparing relations (84) and (87) one can conclude
that linear increase of the sheet thickness �∝ t predicted by Coroniti
(1990) and Michel (1994) and recently reproduced in numerical
simulation (Philippov, Spitkovsky & Cerutti 2015) can be realized
for constant particle energy Ek and constant ratio nin/nout only. The
first condition Ek ≈ const. is in agreement with time-independent
acceleration energy along the sheet. On the other hand, the second
one nin/nout ≈ const. can be realized only if the particle inflow
significantly increases the number of particles inside the sheet. Such
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an inflow was also reproduced in numerical simulations (see e.g.
Cerutti et al. 2015).

Besides, if the plasma is hot, Ek > mec
2, we obtain for the Larmor

radius

〈RL〉 = c〈p⊥〉
eB

= Ek

eB
= RL

t

t0

�

4λ

nout

nin
. (89)

As one can see, 〈RL〉 = � · vz/c. Thus, for the condition � ∼ RL

to be fulfilled, relativistically hot current sheet requires vz ∼ c.
On the other hand, if the number density outside the sheet is much

smaller than inside, the number of particles inside the sheet cannot
increase. This will lead to nin ∝ t−3, but nout will be proportional to
t−2. So the ratio between nout and nin should be of order unity. In
this case particle acceleration can be estimated as

δpz � mec�
2, (90)

or, in laboratory frame,

δplab
z � mec�, (91)

which is of the same order as mean thermal momentum of particles
inside current sheet.

5 D I S C U S S I O N A N D C O N C L U S I O N S

This paper provides the formalism to describe essentially time-
dependent evolution of the current sheet in the pulsar wind. As the
first step in this direction, we carry out the calculations in the co-
moving reference frame and successfully determine intrinsic elec-
tromagnetic fields of the current sheet. In our opinion, this approach
allows us to describe the physical processes in a sheet more vividly.

In the first part of this paper we investigate asymptotic structure
of the wind from rotating oblique neutron star using force-free
approximation. General asymptotic solution of the Grad–Shafranov
equation for quasi-spherical pulsar wind up to the second order
in small parameter ε = (�r/c)−1 was obtained. We have shown
that the wind can have arbitrary latitude dependence on the energy
flux. In particular, our solution describes the latitudinal structure of
the radial magnetic field obtained numerically for oblique rotator.
The form of current sheet in asymptotic does not depends on its
latitudinal structure and matches the one in Bogovalov solution
(Bogovalov 1999).

As the force-free approximation does not allow us to discuss the
inner structure of the current sheet, we use MHD approximation in
which the velocity of the pulsar wind is assumed to be less than that
of light. Indeed, as is well known (see, e.g. Beskin et al. 1998), out-
side the fast magnetosonic surface the velocity of quasi-spherical
MHD flow becomes almost constant. Using this property (and carry-
ing out calculations in the comoving reference frame), we estimate
the efficiency of the particle acceleration inside the sheet.

The main conclusion of our consideration is that the intrinsic
time dependence of a sheet in the comoving reference frame (espe-
cially the increase of the sheet thickness �) inevitably results in the
appearance of the electric field which is larger than the magnetic
one inside the sheet. It is this electric field that controls the electric
current of a sheet.

Finally, after investigating the motion of individual particles in
the time-dependent current sheet, we evaluate the width of the sheet
and its time evolution. In particular, we considered both relativistic
and non-relativistic temperatures inside the sheet.

In particular, it was shown that while the individual particle or-
bit grows as t1/2, the sheet as a whole should grow linearly with

time. This contradiction can be solved by using methods of kinetic
equation. Since the particle flow inside a sheet due to its expansion
is considerable, the evolution of current sheet can be defined by
incoming particles and not by the evolution of individual particles
inside the sheet.

As for particle acceleration, it was shown that in relativistic case
when number density inside the sheet is similar to one outside the
sheet, particle gains additional mecσ 1/3 momentum (in laboratory
frame) due to expansion of a sheet. It is important to notice that al-
though the acceleration region |E| > |B| is narrow, the trajectories
of particles are adjusted in such a way that they accelerate in the
MHD region |E| < |B| every half period in one direction, cross the
|E| > |B| zone and then accelerate in the same direction again (see
Fig. 5).

Finally, it is important to highlight the difference between this
paper and Lyubarsky & Kirk (2001b) in which authors use global
equation in order to determine growth of current sheet thickness.
In our work we do not consider reconnection, so our result should
be interpreted as pre-reconnection sheet structure. However, the
electric field, which results from time dependence of sheet thickness
in the case of linear growth, has the same structure as reconnection
field and it is possible, that even in the case of reconnection, our
description of individual particle motion remains relevant.
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A P P E N D I X A : FI E L D S IN A C O M OV I N G
F R A M E FO R A L I G N C A S E

In this appendix, we investigate the particle motion inside and out-
side the time-dependent current sheet with magnetic field

By = B0
RL

ct
tanh

[
z

�(t)

]
. (A1)

For the aligned case we consider the same functional form of the
time dependence of the sheet thickness on time �(t) = �0(t/t0)κ .
Then, the expression for the electric field

Ex = B0RLz

c2t2
tanh

[
z

�(t)

]
, (A2)

Ez = 0, (A3)

again does not satisfy Maxwell equations for arbitrary κ , and re-
mains valid only for κ = 1. This corresponds to the linear growth
of the sheet thickness due to the radial expansion with constant
opening angle of a sheet.

Similar to the orthogonal case there are two possibilities to make
the fields satisfy Maxwell equations:

(i) Changing x component of electric field, without any change
of z component

(ii) Changing z component without any change of x component.

In contrast to the orthogonal case we change xcomponent of the
electric field instead of adding Ez one. This implies that Hamiltonian
for aligned case will be independent of x:

Hal = c
(
m2c2 + P 2

z + p2
z

)1/2
, (A4)

where

Px = px − eB0RL�(t)

c2t
log

[
cosh

(
z

�(t)

)]
. (A5)

Finally, similarly to the orthogonal case, we can find the solution
of Maxwell equations by choosing the integration constant such that
electric field vanishes at infinity.

Ex = B0RL�(t)

c2t2

{
(1 − κ) log

[
2 cosh

(
z

�(t)

)]

+ κ
z

�(t)
tanh

(
z

�(t)

)}
. (A6)

As a result, an estimation of the current sheet width based on the
equality between Larmor radius and the sheet width is still valid
for the aligned case. But here the drift leads to the rarefaction of
sheet, since it is directed perpendicular to the sheet. On the other
hand, since ∂H/∂x = 0, we have Px = const. Hence, the particle
can gain acceleration along the sheet only due to electromagnetic
part of momentum

δpx = eB0RL

c2

{
�0

t0
log

[
cosh

z0

�0

]
− �(t)

t
log

[
cosh

z

�(t)

]}

(A7)

A1 Particle motion

For aligned current sheet we use expressions (A1), (A3) and (A6)
for electric and magnetic fields:

By = B0
t0

t
tanh

z

�(t)
, (A8)

Ex = B0
RL�(t)

(ct)2

{
(1 − κ) log

[
2 cosh

z

�(t)

]

+ κ
z

�(t)
tanh

x

�(t)

}
, (A9)

Ez = 0. (A10)

Here again �(t) ∝ tκ . After writing down equations of motion and
some algebra we obtain the following equation for z coordinate of
the particle:

z̈ = ẋ
�

t
tanh

z

�(t)
(A11)

and equality for x component of velocity

ẋ = v0 + �
�0

t0
ln[2 cosh(x0/�0)] − �

�

t
ln[2 cosh(x/�)],

(A12)

which corresponds to conservation of x component to generalize
momentum. After that we should consider three cases:

(i) κ < 1. In this case, on large time-scales the first term domi-
nates, so we can neglect the second one. The same takes place when
κ = 1 but ẋ ∼ const. �= 0

(ii) κ > 1. In this case, we neglect the first term.
(iii) κ = 1, ẋ → 0. This scenario is possible if � ∝ t. In this case

z(t) = z0(t) + δz(t), where z0/� = const. Accordingly, δz � z0 and
z′′

0(t) = 0.

In the first case we have

z̈ = �
v0 + V

t
tanh(z/�), (A13)
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Figure A1. Numerical solution to equation (A13). The self-consistency
obtained for κ = 0.35.

where V = ��0
t0

ln[2 cosh(x0/t0)]. This equation cannot be solved
analytically for arbitrary κ even in z/� � 1 limit. For v0 + V < 0
the numerical solution of this equation has been shown at (A1).

In the second case we obtain the following equation:

z̈ = −�2 �

t2
tanh(z/�) log[2 cosh(z/�)]. (A14)

This equation is similar to equation (78). As we already estab-
lished above, it describes particle orbit with t1/2 radius growth rate.

Finally for κ = 1 we have

δ̈z = −�2 δz

t2
tanh2(x0/�). (A15)

The solution of this equation is

δz ∝ √
t cos

[
� tanh

(
x0

�(t)

)
log t

]
. (A16)

This solution describes radial motion of particle experiencing Lar-
mor’s motion in declining field.
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