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ABSTRACT
The limit on the intrinsic brightness temperature, attributed to ‘Compton catastrophe’, has
been established being 1012 K. Somewhat lower limit of the order of 1011.5 K is implied if
we assume that the radiating plasma is in equipartition with the magnetic field – the idea that
explained why the observed cores of active galactic nuclei (AGNs) sustained the limit lower
than the ‘Compton catastrophe’. Recent observations with unprecedented high resolution by
the RadioAstron have revealed systematic exceed in the observed brightness temperature.
We propose means of estimating the degree of the non-equipartition regime in AGN cores.
Coupled with the core-shift measurements, the method allows us to independently estimate
the magnetic field strength and the particle number density at the core. We show that the ratio
of magnetic energy to radiating plasma energy is of the order of 10−5, which means the flow
in the core is dominated by the particle energy. We show that the magnetic field obtained
by the brightness temperature measurements may be underestimated. We propose for the
relativistic jets with small viewing angles the non-uniform magnetohydrodynamic model and
obtain the expression for the magnetic field amplitude about two orders higher than that for
the uniform model. These magnetic field amplitudes are consistent with the limiting magnetic
field suggested by the ‘magnetically arrested disc’ model.

Key words: radiation mechanisms: non-thermal – galaxies: active – galaxies: jets – BL Lac-
ertae objects: general.

1 IN T RO D U C T I O N

The previous observations of active galactic nuclei (AGNs) in all
radio bands have limited the core brightness temperature by 1012 K.
This phenomenon has been explained in Kellermann & Pauliny-
Toth (1969) as being an outcome of the so-called inverse Compton
catastrophe.

It can be illustrated by the following argument (Kirk, Melrose &
Priest 1994). Suppose we have an electron moving in the magnetic
field B with the velocity v, β = v/c, where c is the speed of light,
and the corresponding Lorentz factor γ . It radiates synchrotron
radiation with the power (see e.g. Rybicki & Lightman 1979)

PS = 4

3
σTcβ2γ 2UB. (1)

Here, σT = 8π/3r2
0 is the Thomson cross-section, where

r0 = e2/mc2 is the electron classical radius, e and m are the elec-
tron charge and mass, respectively, c is the speed of light and
UB = B2/8π is the magnetic energy density. The same electron
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loses its energy undergoing the inverse Compton scattering of pho-
tons, the power being

PC = 4

3
σTcβ2γ 2Uph, (2)

where the photon energy density

Uph =
∫

εdn(ε), (3)

with the photon energy distribution n(ε). The photon energy den-
sity Uph comprises synchrotron photons Uph0, once Comptonized
photons Uph1 and so forth. The full power of Compton losses is
described by Kirk et al. (1994) as follows:

Uph = Uph0

[
1 + Uph0

UB
+

(
Uph0

UB

)2

+ · · ·
]

= Uph0

1 − Uph0/UB
. (4)

If Uph0 = UB, the power PC diverges, which is referred to as the
‘inverse Compton catastrophe’.

The result, obtained by Kellermann & Pauliny-Toth (1969), is
the limiting brightness temperature 1012 K, beyond which the ‘in-
verse Compton catastrophe’ takes place. The question was how
does the source ‘know’ this limit and sustains its brightness
temperature below the limit. The answer has been proposed by
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Readhead (1994). There is another limit on the brightness tem-
perature – the so-called equipartition temperature. If the radiating
plasma and the magnetic field are in energy equipartition in the
source, the corresponding temperature Teq is just below the limiting
value by the inverse Compton catastrophe one.

However, the recent observations of AGN radio cores with the
high-resolution RadioAstron program (Kovalev et al. 2016; Lisakov
et al. 2017) questioned the existence of such a limit, since there are
observations that systematically show the brightness temperatures
greater than not only Teq, but also 1012 K.

In this work, we do not address the question what is the phys-
ical process underlying such extreme brightness temperatures. We
address the question of obtaining the non-equipartition physical pa-
rameters of the radiating domain such as the magnetic field B, the
particle number density n and the measure of the non-equipartition
�. This is an important issue. Indeed, the analytical and numeri-
cal modelling (Beskin & Nokhrina 2006; Komissarov et al. 2007;
Tchekhovskoy, McKinney & Narayan 2008, 2009; Lyubarsky 2009)
supports the idea that relativistic jets from AGNs must be in the
equipartition regime. In particular, the magnetization parameter

σ = B2

4πnmc2�2
, (5)

which is the ratio of the Poynting vector flux to the plasma kinetic
energy flux, must be unity. Here, � is the bulk Lorentz factor of a jet
and n is the proper particle number density. However, it is believed
that only the small portion of particles radiate. Indeed, the bulk
plasma velocity, defined by the magnetohydrodynamics (MHD), is
exactly the drift velocity in crossed electric and magnetic fields.
So, a cold plasma, moving with the drift velocity, does not radiate.
To produce the radiation, the cold plasma must be disturbed and
accelerated, and the power law

dn = keγ
−pdγ, γ ∈ [γmin; γmax] (6)

being used to describe the energy distribution of the radiating
plasma. Here, ke is the amplitude of the electron energy distribution.
To model the radiation of particles in the magnetic field, we employ
synchrotron emission and self-absorption. Indeed, spectral energy
distributions performed for blazars (see e.g. Abdo 2011) demon-
strate that at the low energy the Compton part of the radiation does
not play an important role.

As to acceleration process itself, there are two main processes
that may account for it. One is the particle acceleration on shocks.
This process can hardly account for the observed radiation, since it
has been shown (see e.g. Kirk et al. 1994) that the acceleration is not
efficient for the magnetized shocks. As the possibility for a particle
once accelerated to return to the shock front is suppressed, the Fermi
acceleration mechanism does not work. The second process is the
reconnection of the magnetic field. It accelerates about 1 per cent
of particles very effectively (Sironi, Spitkovsky & Arons 2013),
producing a power-law spectrum, with maximum particle energy
growing with the time of numerical simulation.

2 J E T PA R A M E T E R S IN TH E
B L A N D F O R D – KÖ N I G L MO D E L

The following model is used to explain the properties of compact
bright features observed in the radio band (see Gould 1979; Lind &
Blandford 1985; Lobanov 1998; Zdziarski et al. 2015): the radiation
domain is either a uniform ‘plasmoid’ or a uniform excited part of a
continuous jet. The position of this radiating spherical (Gould 1979)
domain along the jet r defines the amplitudes of the particle number

density and of the magnetic field (with uniform distribution across
the radiating domain) according to the Blandford–Königl model
(Blandford & Königl 1979) as

B(r) = B0

( r0

r

)
, ke(r) = ke,0

( r0

r

)2
. (7)

Here, B0 and ke,0 are the magnetic field and the particle number
density amplitude at a distance r0, respectively.

The model has been used to obtain physical parameters of jets
such as magnetic field, particle number density (Lobanov 1998;
Hirotani 2005; O’Sullivan & Gabuzda 2009), and multiplicity
parameter and Michel’s (Michel 1969) magnetization parameter
(Nokhrina et al. 2015) using the core-shift effect – the observed
shift of the position of radio cores at different frequencies. All these
results are based on the equipartition assumption in different for-
mulations – either the energy densities of the magnetic field and
radiating particles are equal, or the fluxes of the Poynting vector
and the total particle kinetic energy are equal with the number of
radiating particles consisting about 1 per cent of the total particle
number density.

2.1 Magnetic field

The observed flux, or the observed brightness temperature, can
be used to estimate the magnetic field in the radiating domain
(Zdziarski et al. 2015). The observed spectral flux Sν of a core
at the frequency ν can be expressed, on the one hand, through the
brightness temperature Tb as

Sν = 2πν2θ2

c2
kBTb, (8)

where θ is the angular size of the radiating domain. On the other
hand, the flux for the optically thick uniform source of radius R at
the distance d can be expressed using the spectral photon emission
rate ρν and the effective absorption coefficient æ ν as (Gould 1979)

Sν = π�ν
ρν

æν

R2

d2
u(2Ræν), (9)

and the function of the optical depth u(2Ræν) is defined in
Gould (1979). The emission and absorption coefficients for
the synchrotron-self-Compton model can be expressed in a jet
frame (primed), i.e. in a frame where the electric field vanishes,
as (Ginzburg & Syrovatskii 1964; Blumenthal & Gould 1970;
Gould 1979)

ρ ′
ν′ = 4π

(
3

2

)(p−1)/2

a(p)αk′
e

(
ν ′

B′

ν ′

)(p+1)/2

, (10)

æ′
ν′ = c(p)r2

0 k′
e

( ν0

ν ′

) (
ν ′

B′

ν ′

)(p+2)/2

. (11)

Here, ν ′
B′ = eB ′/mc is a gyrofrequency in the fluid frame, � is the

Planck constant, α = e2/�c is the fine structure constant and the
functions a(p) and c(p) of the electron distribution spectral index p
are defined in Gould (1979).

Equations (8) and (9) are written in an observer frame. However,
the spectral flux is calculated in a jet (primed) frame using (10)
and (11), where it is expressed as a function of the frequency ν ′,
magnetic field B′ and particle number density amplitude k′

e in the
jet frame. In order to rewrite a flux and a brightness temperature
in terms of the observer frame, we use the Lorentz invariant Sν/ν

3

(Rybicki & Lightman 1979). To express the magnetic field and
particle number density in an nucleus frame, and the frequency
in an observer frame, we use the following relations. The particle
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number density amplitude k′
e in the fluid frame correlates with its

value ke in the nucleus frame as

k′
e = ke/�, (12)

and an observed frequency transforms from the fluid frame into an
observer frame as

ν ′ = νobs
1 + z

δ
, (13)

and the brightness temperature Tb, obs = Tbδ/(1 + z). Here, z
is a cosmological redshift of a source and a Doppler factor of
a flow δ = [�(1 − βcos ϕ)]−1. The viewing angle of a jet is
ϕ. We assume that the toroidal component of a magnetic field
dominates the jet radiating region outside the light cylinder with
its position defined by RL = c/�F. Indeed, the MHD analytical
(Beskin 1997; Narayan, McKinney & Farmer 2007; Tchekhovskoy
et al. 2008; Lyubarsky 2009; Nokhrina et al. 2015) and numeri-
cal (Tchekhovskoy & Bromberg 2016) models provide that Bϕ ≈
BPr/RL. Thus, the magnetic fields transform from the fluid frame
into the nucleus frame as B ≈ B′�.

Equating the right-hand sides of equations (8) and (9), we obtain
for the magnetic field

B = k0(p)
m3c5

e

�δ

1 + z
νobs

(
kBTb, obs

)−2
, (14)

where the numerical factor k0 depends on the electrons spectral
index and is equal to

k0(p) = 3.6 × 10−1, p = 2. (15)

A particular spectral index p may be found by fitting the jet spectrum
for a particular source. From the theoretical point of view, it depends
on the non-thermal mechanism of particle acceleration in AGNs,
which is under debate. The first-order Fermi mechanism working at
shocks provides p = 2 (Blandford & Ostriker 1978). However, the
numerical simulations demonstrate that this mechanism works ef-
fectively for low magnetization flows (Sironi & Spitkovsky 2011),
with p ≈ 2.5. On the other hand, magnetic reconnection provides
means for particle acceleration and formation of the power-law
spectrum with the spectral index p depending on the flow mag-
netization (Sironi & Spitkovsky 2014) and ranging from 1.5 to 4.
Keeping in mind the uncertainty of the spectral index, we choose the
value p = 2 as a fiducial parameter characterizing the non-thermal
spectrum of radiating particles. Substituting p = 2, we obtain(

B

G

)
= 7.4 × 10−4 �δ

1 + z

( νobs

GHz

) (
Tb, obs

1012 K

)−2

. (16)

The radio core is observed at the peak spectral flux, with νobs = νpeak

for the magnetic field B and radiating particle number density n at
the surface of the optical depth equal to unity. For each frequency,
the position of this surface is different (core-shift effect, see e.g.
Lobanov 1998), so the magnetic field defined by equation (16) is
for the particular position rcore of the observed core. Equation (16)
does not provide us complete information about the magnetic field
amplitude, since we do not know the position of the core at the
observed frequency. In order to obtain the core position, we need
the measurements of the core-shift effect (Lobanov 1998; Pushkarev
et al. 2011; Sokolovsky et al. 2011) as well.

2.2 Measure of equipartition

The core-shift effect is a change in the observed position of a core at
different frequencies (Lobanov 1998; O’Sullivan & Gabuzda 2009).

It is connected with the self-absorption of the synchrotron sources
(see e.g. Gould 1979): due to absorption we observe the surface of
the optical thickness equal to unity. Both the synchrotron emission
rate and the absorption depend on the emitting particle number den-
sity and magnetic field magnitudes and distributions. The ‘stardart’
core-shift formula by Lobanov (1998) has been obtained under cer-
tain assumptions: the Blandford–Königl field and particle number
density dependence on r (7) and the equipartition between the ra-
diating plasma and magnetic field. The last assumption has been
essential for the results, since measurements of the core-shift allow
only to estimate the dependence of the magnetic field magnitude
on the particle number density. The same equipartition assumption
has been used to establish the ‘equipartition brightness tempera-
ture’ by Readhead (1994). However, the recent observations of the
brightness temperature at high resolution provided by RadioAstron
exceed this ‘equipartition’ limit, so, as indicated by Gómez et al.
(2016), there is, probably, no equipartition in a jet. However, the
measurements of both the brightness temperature and core shift
provide us with the instrument to estimate the magnetic field and
the particle number density independently (Zdziarski et al. 2015),
and thus obtain the measure of ‘non-equipartition’.

Let us introduce the radiation magnetization � – the ratio of the
Poynting flux to the radiating particle energy flux. Each particle
internal energy is given by mc2γ ′, where γ ′ is the Lorentz factor of
radiating particles with respect to plasma bulk motion. The radiating
particle number density n′

rad is given in a jet bulk motion proper
frame. The amplitude k′

e is defined by the radiating particle number
density n′

rad depending on the magnitude of the exponent p as n′
rad =

k′
ef (p) with

f (p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1 − p

(
γ 1−p

max − γ 1−p
min

)
, p �= 1,

ln
γmax

γmin
, p = 1.

(17)

We assume p ∈ (1; 2], and the Lorentz factor of the plasma in a
nucleus frame is defined by γ = γ ′�. In this case, the magnetization
of radiating particles is

� = �(2 − p)B2f (p)

4πmc2nrad

(
γ

2−p
max − γ

2−p
min

) (18)

for p �= 2, and

� = �B2f (p)

4πmc2nrad ln γmax
γmin

(19)

for p = 2. Here, nrad is given in the nucleus frame. For the equipar-
tition between the magnetic field and radiating particles, � = 1.
We will be interested in obtaining estimates for � from the obser-
vations. This will allow us to connect the radiation magnetization
� with the physical properties of the radiating plasma. We will use
the non-dimensional function F�(p) such as

� = �B2

mc2nrad
F�(p). (20)

The expression connecting the jet physical parameters B and rrad

with the position of the radiating region r and the observed frequency
νobs has been obtained by Lobanov (1998), Hirotani (2005) and
Nokhrina et al. (2015):

B2+pn2
rad = ν

4+p
obs F−1

1 F−1
2 r−2, (21)
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where coefficients

F1 = c2(p)(p − 1)2

5(4 + p)

e4

m2c2

( e

2πmc

)2+p

(22)

and

F2 =
(

δ

�(1 + z)

)4+p (
2χ

δ sin ϕ

)2

. (23)

Here, χ is a jet half-opening angle for the conical jet. Using (20), we
rewrite nrad as a function of � and B, and substituting (14) into (21)
we obtain the expression for the flow magnetization in a radiating
domain as a function of its position r from the central source, the
observed brightness temperature, the observed frequency and the
geometrical and velocity factors:

� = 4.1 × 103
(
1.7 × 102

)−p
C�(p)

2χ�2

δ sin ϕ

(
δ

1 + z

)p+5

×
(

r

pc

) ( νobs

GHz

) (
Tb, obs

1012 K

)−(p+6)

. (24)

Here,

C�(p) = F�(p)

f (p)

c(p)√
5(4 + p)

(2π)2

×
[

2.8(1.5)(p−1)/2 a(p)

c(p)

]p+6

. (25)

For p = 2, we obtain

� = 1.58 × 10−5 2χ�2δ6

sin ϕ(1 + z)7

F�(2)

f (2)

×
(

r

pc

) ( νobs

GHz

) (
Tb, obs

1012 K

)−8

. (26)

The above expression has been obtained assuming that (i) the
radiating region has a uniform distribution of nrad and B; (ii)
the radiating domain is optically thick; (iii) the jet is conical with the
half-opening angle χ , so that the jet geometrical thickness along the
line of sight depends on r, χ and ϕ (see Hirotani 2005 for details);
(iv) we observe the surface of the optical depth is approximately
equal to unity at the observed frequency νobs. This allows us to
estimate the order of �, assuming that r is of the order of a parsec.

However, if we additionally adopt the Blandford–Königl scalings
for the magnetic field B and particle number density nrad (7), we
will be able to correlate the position of a radiating domain r with
the observed frequency νobs. Indeed, substituting (7) into (21) one
obtains the classical expression νobsr proportional to the physical
parameters of a jet. The last conclusion is supported by multifre-
quency observations by Sokolovsky et al. (2011). Thus, if we have,
in addition to the measurement of the brightness temperature, the
core-shift measurement, we can use it to obtain the radiating domain
position. As

r sin ϕ = θd
DL

(1 + z)2
, (27)

where DL is the luminosity distance, we introduce

�θd = �

(
1

ν1
− 1

ν2

)
. (28)

With �θd being measured for the two frequencies ν1 and ν2, we
can calculate � in mas GHz and find the observed position of the
core at a given frequency as

rcore = �DL

νobs sin ϕ (1 + z)2
. (29)

Having the knowledge of the core shift, we can estimate the radial
distance of the observed radiating domain of a jet:

robs

pc
= 4.8

sin ϕ(1 + z)2

( νobs

GHz

)−1
(

�

mas GHz

) (
DL

Gpc

)
, (30)

and, consequently, the magnetization in the observed core as

� = 2.1 × 104
(
1.7 × 102

)−p
C�(p)

2χ�2δp+4

sin2 ϕ(1 + z)p+7

×
(

DL

Gpc

) (
�

mas GHz

) (
Tb, obs

1012K

)−(p+6)

. (31)

For p = 2, the expression is

� = 7.7 × 10−5 2χ�2δ6

sin2 ϕ(1 + z)9

F�(2)

f (2)

×
(

DL

Gpc

) (
�

mas GHz

) (
Tb, obs

1012K

)−8

. (32)

2.3 Radiating particle number density

In order to obtain the radiating particle number density in a radiating
domain, we substitute (14) into (21):( nrad

cm−3

)
= 1.1 × 10−3(1.7 × 102)pCn(p)

×� sin ϕ(1 + z)p+3

2χδp+2

(
r

pc

)−1

×
( νobs

GHz

) (
Tb, obs

1012 K

)p+2

. (33)

Here,

Cn(p) = f (p)

√
5(p + 4)

c(p)

[
2.8(1.5)(p−1)/2 a(p)

c(p)

]−(p+2)

. (34)

For p = 2, we obtain the estimate for the radiating particle number
density at the region with the position r:

( nrad

cm−3

)
= 4 × 104 � sin ϕ(1 + z)5

2χδ4
f (2)

×
(

r

pc

)−1 ( νobs

GHz

) (
Tb, obs

1012 K

)4

. (35)

Using (30), one can obtain the expression for nrad as a function
of the observables:( nrad

cm−3

)
= 2.3 × 10−4(1.7 × 102)pCn(p)

× � sin2 ϕ(1 + z)p+5

2χδp+2

(
DL

Gpc

)−1 (
�

mas GHz

)−1

×
( νobs

GHz

)2
(

Tb, obs

1012 K

)p+2

. (36)

For p = 2,

( nrad

cm−3

)
= 8.2 × 103 � sin2 ϕ(1 + z)7

2χδ4
f (2)

×
(

DL

Gpc

)−1 (
�

mas GHz

)−1 ( νobs

GHz

)2
(

Tb, obs

1012 K

)4

.

(37)
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2.4 Physical parameters in the sources with extreme
brightness temperatures

We can apply the above estimates to two objects with the measured
brightness temperature and core shift. Equations (16), (32) and (37)
permit us to obtain estimates for the radiating particle magnetization
�, magnetic field B and radiating particle number density nrad in the
observed radio core (radiating domain) if we have precise enough
measurement of the brightness temperature. On the other hand, if we
have the lower limit for the brightness temperature (Lobanov 2015),
these expressions provide the lower limit for the particle number
density nrad and the upper limit for the magnetic field B and the
magnetization parameter �.

We will calculate the magnetic field B, particle number density (in
nucleus frame) nrad and magnetization (measure of equipartition) �

for the blazar BL Lac and 3C273 based on the measurements of the
core brightness temperature by Gómez et al. (2016) and Kovalev
et al. (2016). The other parameters we need are the Doppler factor,
the Lorentz factor of a flow, the observation angle ϕ, redshift z
and the half-opening angle χ . We take the redshift and apparent
velocity

βapp = β sin ϕ

1 − β cos ϕ
(38)

from Lister et al. (2013).
There are several approaches for the calculation of a Doppler

factor δ from the observed jet parameters. The first one employs
the relation ϕ ≈ γ −1 and provides δβvar = βapp. The modelling of a
probability of a source with a Doppler factor δ = βapp from the flux-
density-limited sample (Cohen et al. 2007) shows that this probabil-
ity is peaked around unity for a large sample. Another assumption
used in this method is that the pattern speed is approximately equal
to the flow speed, and the results of modelling by Cohen et al.
(2007) support it. The second way to estimate the jet Doppler factor
is based on the assumption that the characteristic time of variability
of a bright knot in a jet gives us information about the light-travel
time across the knot of the observed angular size. This allows us to
calculate the variability Doppler factor (Jorstad et al. 2005). It has
been shown by Jorstad et al. (2005) for the set of 15 sources that
δβapp and δvar correlate with each other, following approximately the
linear dependence δβapp ≈ 0.72δvar. This supports a possibility of
using δβvar as an estimate for the Doppler factor of each individual
source. The third method used by Hovatta et al. (2009) is based
on the comparison of the variability brightness temperature to the
equipartition brightness temperature.

For the two sources with extreme brightness temperature, the
Doppler factor can be estimated by the first two methods. We do
not use the results by Hovatta et al. (2009), since they have been
obtained using the equipartition assumption. For the 3C 273 source,
δβapp = 14.86 (Lister et al. 2013) and δvar = 12.6 (Jorstad et al. 2005).
For BL Lac, δβapp = 9.95 (Lister et al. 2013) and δvar = 8.1 (Jorstad
et al. 2005). Here, we have chosen the maximal value for δvar from
the set of different values for different knots. Both methods provide
the estimates for the Doppler factors which are in good agreement
with each other. For our purposes, we use the estimate δβapp , as
for the sources under consideration δβapp > δvar, thus providing the
upper limit for the values of B and � and the lower limit for nrad –
the closest to the equipartition value limits.

The expression for the observation angle can be found using the
Doppler factor definition and equation (38):

ϕ = atan

(
2βapp

2β2
app − 1

)
. (39)

We also use the observations of the apparent half-opening angle by
Pushkarev et al. (2009). Having the knowledge of the observation
angle ϕ and the apparent half-opening angle χ app, one can obtain
the half-opening angle

χ ≈ χapp sin ϕ/2. (40)

The luminosity distance DL is obtained according to the � dark
matter cosmological model with H0 = 71 km s−1 Mpc−1, �m = 0.27
and �� = 0.73 (Komatsu et al. 2009).

BL Lac parameters. For this object, we use the brightness tem-
perature measurements by Gómez et al. (2016). We choose the
measurement at νobs = 15 GHz, as this frequency is closest to the
frequencies used to estimate a core shift for this object. The lower
estimate for the observed brightness temperature is 7.9 × 1012 K. We
also employ the following observable parameters needed to obtain
the physical properties at the core of BL Lac. They are as follows:
z = 0.069, βapp = 9.95 (Lister et al. 2013), χ app = 26.◦2 (Pushkarev
et al. 2009) and � = 0.55 mas GHz (Pushkarev et al. 2011). From
these we find DL = 0.31 Gpc, ϕ = 0.1, χ = 0.02 and � ≈ 20.
Substituting these parameters into (16), (32) and (37), we obtain the
following parameters: B = 3.3 × 10−2 G, nrad = 3.4 × 107 cm−3

and � = 1.3 × 10−5.
3C273 parameters. For this object, we take the measurements

of the brightness temperature by Kovalev et al. (2016) at νobs =
4.8 GHz. For this object, the observed brightness temperature is
Tb, obs = 13 × 1012 K. We employ the following observable parame-
ters for the 3C273: z = 0.158, βapp = 14.86 (Lister et al. 2013),
χ app = 10.◦0 (Pushkarev et al. 2009) and � = 0.34 mas GHz
(Pushkarev et al. 2011). From these we calculate DL = 0.75,
ϕ = 0.067, χ = 0.006 and � ≈ 30. For these parameters, we
obtain the following physical parameters: B = 8.1 × 10−3 G,
nrad = 1.4 × 107 cm−3 and � = 2.9 × 10−6.

The magnitudes of the magnetic field and particle number den-
sity in the radiation region, obtained based on the brightness
temperature measurements, significantly differ from the jet pa-
rameters, obtained by Lobanov (1998), O’Sullivan & Gabuzda
(2009) and Hirotani (2005) based on the equipartition assump-
tion. From equations (16), (32) and (37), we can check the would-
be observed brightness temperature for the system in equiparti-
tion and, consequently, the equipartition magnetic field Beq and
the radiating particle number density nrad, eq for our sources. Set-
ting for each source � = 1, which corresponds to the equipar-
tition regime, we obtain Tb, eq = 1.9 × 1012 K for BL Lac and
Tb, eq = 6.8 × 1011 K for 3C 273. The equipartition magnetic
field and radiating particle number density in the observed core
are Bn,eq = 0.56 G and nrad,eq = 1.2 × 105 cm−3 for BL Lac, and
Bn,eq = 3 G and nrad,eq = 26 cm−3 for 3C 273. The extreme values
of the physical parameters of the radiating region are in accor-
dance with the conclusions by Readhead (1994), who had found
that even the brightness temperatures at the Compton catastro-
phe limit would need an extreme departure from the equipartition.
Here, we want to mention that the 3C 273 source also demon-
strates the extreme magnitude of Michel’s magnetization, even cal-
culated based on the equipartition assumptions (Nokhrina et al.
2015).

We have obtained the radiating particle magnetization for the
two sources with extreme brightness temperatures of the order of
10−5. The obtained radiating magnetization allows us to estimate
the total outflow magnetization σ tot. Indeed, the total magnetization
is defined as a function of a bulk flow magnetization σ ≈ 1 for
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MHD outflows and radiating magnetization � 	 1:

σtot = B2

4πmc2n� + 4πmc2nrad ln γmax
γmin

/�
= 1

1/σ + 1/�
. (41)

Thus, we conclude that the radiating plasma must be highly rela-
tivistic so as to dominate the particle energy flux, at least in the
radiation domain, so that the total outflow magnetization

σtot ≈ � 	 1. (42)

The non-equipartition physical parameters in the core have ex-
treme values. Indeed, let us estimate the maximum particle number
density in a jet provided that the total jet power is in the particle
kinetic energy. Thus,

�mc3
∫ Rj

0
nlab(r⊥)2πr⊥dr⊥ ≤ Pjet. (43)

For the uniform transversal number density distribution, we get(
nlab

cm−3

)
≤ 104

(
Pjet

1045 erg s−1

) (
Rjet

0.1 pc

)2

. (44)

Although the total jet power is not always known, the estimate
based on correlation between the total jet power and the radio power
(Cavagnolo et al. 2010) may be applied. This provides the values of
PBLLac ≈ 1.2 × 1044 erg s−1 and P3C273 ≈ 3.5 × 1045 erg s−1 for both
sources (Nokhrina et al. 2015). For inequality (44) to hold for the
obtained values of nrad, the jet radius Rjet has to be approximately
20 and 2 pc, respectively. These values exceed the measured jet
radius for M87 (Mertens et al. 2016) of the order of 0.1 pc. This
may mean that we underestimate the magnetic field amplitude,
or that the physical conditions in the radiating domain are very
different from the conditions over the larger jet domain, so that the
Blandford–Königl model is not applicable for the radiating core.
In what follows, we will address the first issue of the probable
underestimation of the magnetic field magnitude.

3 TH E S I M P L E S T N O N - U N I F O R M M O D E L

We see that the standard approach of the Blandford–Königl model
applied for the observed extreme brightness temperatures gives the
small magnetic field and unphysically high particle number density.
However, as pointed out by Marscher (1977), non-uniform models
with the transversal structure provide the strong dependence of
physical parameters of a flow on observables. In this section, we will
relax the assumption of a uniform distribution of a magnetic field
across the radiating domain. Here, we will employ the MHD model
for the transversal jet structure in the radiating domain in order to
calculate the spectral flux and thus obtain the expression for the
magnetic field as a function of an observed brightness temperature.
We plan to reconsider the effect of the non-uniform distribution of
physical parameters on the core-shift effect in the future paper.

3.1 Model with the uniform velocity across the jet

We assume the radiation site being the part of a continuous cylin-
drical jet with the bulk Lorentz factor � with plasma excited by
some process so it has a power-law energy distribution (6) in the jet
frame (which in our model is also a pattern frame). We assume a
radiating region of a jet being uniform along the jet axis, but with
a transversal structure: the magnetic field B(r⊥) and the particle
number density n(r⊥) are the functions of the radial distance from
the jet axis r⊥. These are discussed in the subsequent sections.

Modelling the transversal jet structure needs solving the MHD
equations – the Grad–Shafranov equation together with the
Bernoulli equation (see e.g. review by Beskin 2010). In general,
these cannot be solved analytically, although in some special cases
(self-similarity or special geometry) the solution may be obtained.
The numerical MHD simulations provide a powerful instrument in
constructing the jet internal structure models. In this work, we will
use the obtained earlier analytical and numerical results as a simplest
model for the relativistic jet transverse structure. We will model the
particle number density and the toroidal magnetic field dependence
on the distance from the jet axis by two domains. The first one is a jet
central core, which we define as the central part of a jet with uniform
n and Bϕ distributions (Komissarov et al. 2007; Lyubarsky 2009;
Nokhrina et al. 2015; Tchekhovskoy & Bromberg 2016). The size
of the central core Rc is of the order of a few light cylinder radii. In
particular, the numerical modelling by Tchekhovskoy & Bromberg
(2016) gives Rc ≈ RL, and the semi-analytical modelling by
Komissarov et al. (2007), Beskin & Nokhrina (2009) and
Nokhrina et al. (2015) gives Rc ≈ 5RL. As these results are very
close, we will use for simplicity Rc = RL. Further, the same mod-
elling allows us to approximate the particle number density and
the poloidal and toroidal magnetic fields in a jet in the second do-
main by the power laws (Nokhrina et al. 2015; Tchekhovskoy &
Bromberg 2016). So, we will use the following functions as an
approximation for B(r⊥) and n(r⊥):

nrad = n0

⎧⎨
⎩

1, r⊥ ≤ RL,

(RL/r⊥)2 , RL < r⊥ ≤ Rj,

(45)

BP = B0

⎧⎨
⎩

1, r⊥ ≤ RL,

(RL/r⊥)2 , RL < r⊥ ≤ Rj,

(46)

Bϕ = B0

⎧⎨
⎩

r⊥/RL, r⊥ ≤ RL,

RL/r⊥, RL < r⊥ ≤ Rj.

(47)

For the jet radiating region with the flat Lorentz factor � distri-
bution across a jet, the poloidal magnetic field does not change with
transformation from the jet into observer’s frame, and the toroidal
magnetic field transforms as

B ′
ϕ = Bϕ/�. (48)

Within this model, the poloidal magnetic field dominates the
toroidal for r⊥ < �RL, and we have the following scalings for
the particle number density and the magnetic field in a fluid frame:

B ′ = B0fB(r⊥) = B0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, r⊥ ≤ RL,

(RL/r⊥)2 , RL < r⊥ ≤ �RL,

RL/r⊥�, �RL < r⊥ ≤ Rj,

(49)

n′
rad = n0

�
fn(r⊥) = n0

�

⎧⎨
⎩

1, r⊥ ≤ RL,

(RL/r⊥)2 , RL < r⊥ ≤ Rj.

(50)

Here, we also assumed that the ratio of radiating particles to all the
particles in a jet is constant across the jet.

The photon emission rate (10) and the effective absorption coef-
ficient (11) have been obtained by Ginzburg & Syrovatskii (1964)
and Blumenthal & Gould (1970) for the randomly oriented mag-
netic field. The direction of a magnetic field in the derivation in
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Blumenthal & Gould (1970) sets the possible distribution of a pitch
angle α of radiating particles. In particular, for randomly oriented
field, the pitch angle has a flat distribution, which gives after av-
eraging over α the appropriate factor in terms of function a(p) in
(10). However, we can use expressions (10) and (11) even for the
ordered magnetic field, but randomly oriented orbits of the radiating
particles, provided the pitch angle α also has a flat distribution.

To obtain the numerical values, we need estimates for RL and Rj.
Further we use the following dimension parameters for a central
engine and an outflow angular velocity: the gravitational radius for
a black hole with MBH = 109 M� is rg = 10−4 pc. We also use the
result obtained by Zamaninasab et al. (2014) for the light cylinder
radius, which can be rewritten as

�Frg

c
= 2πη

50
, (51)

where Wtot = ηṀc2. Setting η = 1, we get RL ≈ 10rg, the result,
that we will use. As to jet radius Rj, the observations of M87 provide
the value Rj ≈ 0.1 pc (Mertens et al. 2016), so we set Rj = 102RL.

3.2 Limiting parameters

In Section 2, we have obtained that the upper limit for the particle
number density in the model with the uniform particle number
density distribution is approximately 104 cm−3, assuming the jet
parameters of the order of Pjet ≈ 1045 erg s−1 and Rjet ≈ 0.1 pc.
For the non-uniform radial distribution (45), the upper limit on the
particle number density amplitude nlab

0 is nlab
0 ≤ 107, with nlab(Rj)

being of the order of 103 cm−3.
The same bounding limits can be obtained for the toroidal mag-

netic field – the field that in MHD models defines the Poynting flux
transported by a jet:

c

4π

∫ Rj

0
B2

ϕ(r⊥)2πr⊥dr⊥ ≤ Pjet. (52)

For the uniform model Bϕ ≤ 1 G. For the toroidal magnetic field
defined by (47), we obtain the field amplitude B0 ≤ 40 G for the
same jet parameters.

3.3 Optical depth for small viewing angles

Let us determine the optical depth

τ =
∫ s′

0

0
æ′

ν′ ds ′ (53)

of the radiating domain depending on n0, B0 and νobs for the jets
directed almost at the observer – the result applicable for the BL
Lac and quasar-type sources. Since the optical depth is a Lorentz
invariant, we will calculate it in the fluid frame. However, we express
it as a function of amplitudes of the particle number density n0, the
magnetic field B0 in the nucleus frame and the frequency νobs in the
observer frame, using the transformations from the jet frame into
the nucleus or the observer frame (13) and (49) and (50). For small
viewing angles ϕ 	 1, we simplify the integration by taking ds′ ≈
dz′, so that

τ (z, r⊥) = 0.28
1

f (p)

(
δ

1 + z

)3 ( n0

cm−3

) (
B0

G

)2

×
( νobs

GHz

)−3
(

z

RL

)
fn(r⊥)f 2

B (r⊥). (54)

The expression for an optical depth τ (54) can be rewritten through
dimensionless τ 0 that depends only on the intrinsic radiating domain
parameters and the Doppler factor

τ0 = 0.28
1

f (p)

(
δ

1 + z

)3 ( n0

cm−3

) (
B0

G

)2 ( νobs

GHz

)−3
, (55)

and the dimensionless ‘position’ factor, so

τ = τ0
z

RL
fn(r⊥)f 2

B (r⊥). (56)

Since the jet physical parameters change significantly across the
jet cross-section, the optical depth of the different domains may
be greater or smaller than unity. For example, let us describe the
position of a surface with an optical depth equal to unity along the
jet as a function of the radial distance from the jet axis r⊥. Let us
take the observed frequency νobs = 10 GHz characteristic for the
radio interferometric observations, and δ ≈ 10 and � ≈ 10. For
all reasonable parameters of a jet, n0 and B0, the surface τ = 1 is
situated at the geometrical depth z being only a small fraction of a
parsec in the central part of a jet. For greater r⊥, the geometrical
depth of the surface τ = 1 grows extremely fast towards the jet
edges. The result strongly depends on physical parameters in a jet.
For the limiting parameters (the maximal optical thickness), if we
assume n0 = 107 cm−3 and B0 = 40 G, the surface τ = 1 for the
whole jet cross-section remains optically thick for the radiating
domain depth z greater than 10−3 pc.

However, for the less extreme parameters the situation is quite
different. If we take n0 ≈ 103 cm−3 and B0 ≈ 1 G – the equipartition
parameters for the uniform model obtained by Lobanov (1998) –
the position of the surface with τ = 1 must be of the order of a
few parsec at r⊥ = �RL, which means that the radiating domain is
optically thick in the central jet part and optically thin at the outer
jet domain.

3.4 Non-uniform jet velocity

There are some observational indications of a non-flat transversal
Lorentz factor structure: the limb brightening (see e.g. Giroletti
et al. 2008) and M87 observed velocity transverse profile (Mertens
et al. 2016). In the latter work, superluminal velocities have been
detected in the limbs as well as in the central stream. The nu-
merical (Tchekhovskoy et al. 2008, 2009) and analytical (Beskin
& Nokhrina 2006; Lyubarsky 2009) modelling show that the bulk
flow Lorentz factor is not constant in the transversal jet direction.
In particular, the following transverse Lorentz factor structure has
been predicted by the MHD modelling:

�(r⊥) = γ (r⊥)σM =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γin ≈ 1, r⊥ ≤ RL,

r⊥/RL, RL < r⊥ ≤ σMRL,

σM, r⊥ > σMRL.

(57)

Here, σ M is Michel’s magnetization parameter – the ratio of the
Poynting flux to the particle kinetic energy flux at the base of an
outflow. It bounds the maximum Lorentz factor as � < σ M. We are
using the dependences (45)–(47) for a particle number density and
a magnetic field.

The drift bulk velocity of a plasma has both a toroidal
vdr,ϕ = vdrBP/Bϕ and a poloidal vdr,P = vdrBϕ/BP component.
However, as outside the light cylinder RL = �F/c the toroidal
magnetic field is much greater than the poloidal; we will neglect
the latter. Thus, the poloidal magnetic field does not change with
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transformation from the jet into observer’s frame for r⊥ > RL, and
the toroidal magnetic field transforms as

B ′
ϕ = Bϕ/�(r⊥). (58)

Inside the light cylinder, we have the opposite case: we transform the
poloidal magnetic field, and the toroidal field remains unchanged.
So, under these assumptions in the fluid frame the toroidal magnetic
field dominates the poloidal one at r⊥ > RL, and we have the
following magnetic field and particle number density transversal
profiles in the jet frame:

B ′ = B0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, r⊥ ≤ RL,

(RL/r⊥)2 , RL < r⊥ ≤ σMRL,

RL/r⊥σM, σMRL < r⊥ ≤ Rj,

(59)

n′
rad = n0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, r⊥ ≤ RL,

(RL/r⊥)3 , RL < r⊥ ≤ σMRL,

(RL/r⊥)2 /σM, σMRL < r⊥ ≤ Rj.

(60)

The flow Doppler factor depends on the distance from the axis as
well. We introduce the Doppler factor for the fastest part of a flow
δ0 = 1/σ M(1 − β(r⊥)cos θ ). As the flow is relativistic, we neglect
the change in β across the flow and use

δ(r⊥) = δ0

γ (r⊥)
. (61)

Due to this, the observed spectral flux will be much less homoge-
neous than it is suggested by mere change in B′ and n′ in comparison
with the model with the uniform jet velocity.

The optical thickness as a function of z and r⊥ is now given by

τ (z, r⊥) = 0.28

f (p)

(
δ0

1 + z

)3 ( n0

cm−3

) (
B0

G

)2

×
( νobs

GHz

)−3
(

z

RL

)
fn(r⊥)f 2

B (r⊥)

γ 3(r⊥)

= τ0,2
z

RL

fn(r⊥)f 2
B (r⊥)

γ 3(r⊥)
. (62)

This equation coincides with (54) except for the additional factor
γ 3(r⊥). This means that the optical depth in the central jet part is
the same as in a limit of a uniform Lorentz factor. However, the
position of a surface τ = 1 grows much more rapidly for r⊥ > RL,
and for a reasonable depth L of the radiating domain it becomes
optically thin. The equation for surface τ = 1 is given by

z(r⊥)

RL
= 1

τ0,2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ−3
M , r⊥ ≤ RL,

(r⊥/RL)10σ−3
M , RL < r⊥ ≤ σMRL,

(r⊥/RL)4σ 3
M, σMRL < r⊥ ≤ Rj.

(63)

Although the radiating domain optical thickness declines more
rapidly than in the case of a flat velocity distribution, for upper
limits for n0 and B0 the outer part of an outflow stays optically thick
for L < 2 × 10−2 pc.

3.5 Observed flux

Now we will calculate the observed spectral flux of a model radiat-
ing domain with the non-uniform distribution of a particle number

density and a magnetic field for small viewing angles. We first
determine the spectral flux in the fluid frame, where an emissiv-
ity and an effective absorption are readily calculated (Ginzburg &
Syrovatskii 1964; Blumenthal & Gould 1970), and then transform
it into the observer frame (Rybicki & Lightman 1979).

A spectral flux in the jet frame is defined as

S ′
ν′ = 1

d2

∫
�′

j ′
ν′ (ν ′)dV ′e− ∫

æ′
ν′ (ν′)ds′

, (64)

where �′ is a radiating domain. Using (10) and (11) for the syn-
chrotron radiation, and having j ′

ν′ (ν ′) = �ν ′ρ ′
ν′ (ν ′), we obtain for

the flux in a jet frame written through the observed frequency νobs

and a particle number density n and a magnetic field B in the nucleus
frame the following expression:

S ′
ν(ν, n0, B0) = 0.16

�ν

d2

ν

r0c

( νB0

ν

)−1/2
(

1 + z

δ

)5/2

I , (65)

where the integral I has dimension cm2 and is defined by

I =
∫ Rj

0

1√
fB(r⊥)

r⊥dr⊥
[
1 − e−τ0

L
RL

fn(r⊥)f 2
B (r⊥)

]
. (66)

If the whole jet cross-section is optically thick, the integral can
easily be calculated. In the inner domain r⊥ ∈ [0, �RL], it is equal
to

Iin = R2
L

(
1

6
+ �3

3

)
, (67)

and in the outer domain r⊥ ∈ (�RL, Rj], it is equal to

Iout = 2

5
R2

L

(√
�

(
Rj

RL

)5/2

− �3

)
, (68)

and

I ≈ 2

5

√
�

√
Rj

RL
R2

j , (69)

the outer radiating domain provides the major part of the total flux.
In order to link the spectral flux in the jet frame with the observed

brightness temperature, we use the Lorentz invariance of Sν/ν
3

(Rybicki & Lightman 1979). Substituting (65) and (69) into (8),
one obtains(

B0

G

)
= 6.4 × 10−4�

Rj

RL

δ

1 + z

( νobs

GHz

) (
Tb,obs

1012 K

)−2

. (70)

Compare this result with the uniform model (16). The non-uniform
model of the optically thick outflow gives for a magnetic field
the amplitude of the uniform model multiplied by a ‘geometrical’
factor Rj/RL, which increases the value by two orders. We see
that the uniform model underestimates even the average value of a
magnetic field in comparison with the non-uniform model. Indeed,
B0 is greater than the uniform magnetic field everywhere across the
jet, and for Rj/RL = 102 both fields become comparable only at the
jet boundary.

The magnetic field estimated in the frame of a model with the
non-uniform jet velocity distribution obeys the same expression
(70), since the outer domain r⊥ > σ MRL contributes most in a
spectral flux, and the velocity profile in this domain is the same for
two models.

For the two sources with the measured extreme brightness tem-
peratures, the magnetic field estimated by the non-uniform model
is

BBLLac
non−uni = 3 G, B3C273

non−uni = 0.7 G. (71)
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4 A STRO PHYSICAL APPLICATIONS
AND DISCUSSIONS

In the frame of the Blandford–Königl model, we have rederived
the expressions for a magnetic field and a particle number density
used by Zdziarski et al. (2015) as a tool to estimate these physical
parameters of the radiation domain in a jet independently of the
equipartition assumption. However, contrary to their work, we ex-
pressed the parameters through the brightness temperature. As the
values for Tb,obs obtained with high resolution exceed by two or-
ders the equipartition temperature derived by Readhead (1994), the
jet parameters differ from the ones corresponding to equipartition,
the measure of equipartition being of the order of 10−6 to 10−5. In
particular, the magnetic field in the radiating domain has an order
of 10−3, which according to (7) provides the magnetic field at the
gravitational radius Bg of the order of a few Gauss. The expression
for n gives the unphysically high amount of particles of the order of
107 cm−3, since such an amount would carry energy exceeding the
total jet power. However, the two sources considered in this work
have core shifts smaller than typical errors, estimated in Pushkarev
et al. (2011), of 0.05 mas. Thus, the results for � and n may be
subject to large errors.

We have obtained the expression for the magnetic field ampli-
tude B0 that can be estimated by the measurement of a brightness
temperature. The expression is applicable for blazars, since it uses
the head-on model of radiation transfer for the non-uniform cylin-
drical optically thick radiation domain with profiles for the particle
number density and the magnetic field distribution based on MHD
modelling. The field amplitude characterizes the radiating core re-
gion only and may differ from the other domains along the jet. The
expression for B0 differs from the expression for the homogeneous
model of the radiating domain by the factor Rj/RL, which gives two
orders of magnitude.

In the frame of MHD models, the amplitude B0 characterizes
both poloidal and toroidal magnetic fields. Thus, this amplitude
provides us with an instrument of checking the electrodynamic
model of the black hole energy extraction. Indeed, if we assume the
unipolar inductor model for the AGNs, the total jet power is given
by (Beskin 2010)

Ptot =
(

�rg

c

)2

B2
g r2

g c. (72)

As we can estimate B0 as being of the order of 1 G, using (46), we can
correlate the magnetic field amplitude with the total flux crossing
the gravitational radius, and thus obtain the poloidal magnetic field
at the base of an outflow Bg. Indeed, on the one hand,

�tot = πBgr
2
g , (73)

and, on the other hand,

�tot ≈ 2πB0R
2
L ln

Rj

RL
. (74)

From these equalities, we have

Bg = 2B0 ln
Rj

RL

(
RL

rg

)2

, (75)

which gives Bg ≈ 103. It is about an order smaller than the Eddington
magnetic field (see e.g. Beskin 2010)

BEdd = 104

(
MBH

109 M�

)−1/2

G. (76)

Such a magnitude for Bg provides within the electrodynamical
model for the total jet power an estimate Ptot ≈ 3 × 1043 erg s−1.

The above expression (75) for a poloidal magnetic field mag-
nitude is consistent with the maximum possible amount of the
magnetic flux achieved by magnetically arrested discs. Indeed, for
MBH = 109 M� and accretion rate with 10 per cent of the Edding-
ton luminosity (Hawley et al. 2015), �MAD = 3 × 1033 G cm2, and
for Bg given by (71) and (75), the magnetic flux is of the order of
1033 G cm2.
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