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A B S T R A C T 

In this paper, which is the second in a series of papers, we analyse what parameters can determine the width of the radio pulsar 
‘death valley’ in the P –Ṗ diagram. Using exact expression for the maximum potential drop, which can be realized o v er magnetic 
polar caps and the corresponding threshold for the secondary plasma production determined in Paper I, we analyse in detail the 
observed distribution of pulsars taking into account all the possible parameters (radius R and moment of inertia of a neutron star 
I r , high-energy tail in the γ -quanta energy distribution giving rise to secondary particles, etc.) which could broaden ‘the death 

line’. We show that the consistent allowance for all these effects leads to a sufficiently wide of ‘the death valley’ containing all the 
observed pulsars even for dipole magnetic field of a neutron star. We emphasize that the main goal of this work is to demonstrate 
that the original Ruderman–Sutherland idea of the death line (dipole magnetic field, vacuum gap) is in good agreement with 

observations. The comparison with other models is beyond the scope of this paper. 

Key words: stars: neutron – pulsars: general. 
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 I N T RO D U C T I O N  

ulsar radio emission is believed to be produced by a secondary
lectron–positron plasma generated in the polar regions of a neutron
tar (Sturrock 1971 ; Ruderman & Sutherland 1975 ; Arons 1982 ;
orimer & Kramer 2012 ; Lyne & Graham-Smith 2012 ). For this

eason, the cessation condition for the generation of secondary
articles is associated with the so-called ‘death line’ on the P –Ṗ 

iagram, where P is the pulsar period, and Ṗ is its time deri v ati ve.
o we ver, despite in-depth research on the generation of secondary
lasma conducted since the beginning of the eighties of the last
entury (Daugherty & Harding 1982 ; Gurevich & Istomin 1985 ;
rendt & Eilek 2002 ; Istomin & Sobyanin 2007 ; Medin & Lai 2010 ;
 imokhin 2010 ; T imokhin & Arons 2013 ; Philippo v, Spitko vsk y &
erutti 2015 ; Timokhin & Harding 2015 ; Cerutti, Philippov &
pitko vsk y 2016 ) up to now, a large number of different options
ave been discussed in the literature (Ruderman & Sutherland 1975 ;
landford & Scharlemann 1976 ; Arons 1982 ; Usov & Melrose
995 ), leading to markedly different conditions which set ‘the death
ine’ of radio pulsars (Chen & Ruderman 1993 ; Zhang, Harding &

uslimov 2000 ; Hibschman & Arons 2001 ; Faucher-Gigu ́ere &
aspi 2006 ; Konar & Deka 2019 ). 
We immediately note that in this series of works, we discuss the

classical’ mechanism of particle production only. As is well-known,
his process includes primary particle acceleration by a longitudinal
lectric field, γ -quanta emission due to curvature radiation, produc-
ion of secondary electron–positron pairs, and, finally, secondary
articles acceleration in the opposite direction, which also leads
o the creation of secondary particles (Sturrock 1971 ; Ruderman &
utherland 1975 ). Thus, we do not consider particle production due to
 E-mail: beskin@lpi.ru 

n

W

Pub
nverse Compton Scattering, which, as is well-known (Blandford &
charlemann 1976 ; Zhang et al. 2000 ; Barsukov, Kantor & Tsygan
007 ), can also be a source of hard γ -quanta. As an excuse, we
ote that first of all, we will be interested in old pulsars, in which
he surface temperature may not be high enough to form a sufficient
umber of X-ray photons. 
Moreo v er, we also do not include into consideration synchrotron

hotons emitted by secondary pairs. The point is that the energy of
ynchrotron photons emitted by secondary particles is approximately
5–20 times less than the energy of curvature photons emitted by
rimary particles (see e.g. Gurevich & Istomin 1985 ; Istomin &
obyanin 2007 ). Therefore, near the threshold for particle produc-

ion, when the free path lengths of curvature photons becomes close
o the radius of the star R , the pulsar magnetosphere turns out to be
ransparent for synchrotron photons. 

As a result, as was first shown by Ruderman & Sutherland ( 1975 ),
he cessation condition for the pair creation determining the position
f ‘the death line’ on the P –Ṗ diagram can be e v aluated from the
quality of the height of the 1D vacuum gap 

 RS ∼
(

� 

m e c 

)2 / 7 (
B 0 

B cr 

)−4 / 7 

R 

3 / 7 
L R 

2 / 7 
c (1) 

nd the polar cap radius 

 cap ≈
(

�R 

c 

)1 / 2 

R. (2) 

ere, B cr = m 

2 
e c 

3 /e� = 4 . 4 × 10 13 G is the Schwinger magnetic
eld, R L = c / � is the radius of the light cylinder ( � = 2 π / P is the
tar angular velocity), and R c is the curvature of magnetic field lines
ear the magnetic pole. For magneto-dipole energy losses 

 tot ∼ B 

2 
0 �

4 R 

6 

c 3 
(3) 
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Figure 1. P –Ṗ diagram taken from the ATNF catalogue (Manchester et al. 
2005 ). The line corresponds to relation ( 5 ) with βd = 4 obtained by Chen & 

Ruderman ( 1993 ) for dipole magnetic field. 

a

R

(  

i  

l

P

w
 

e  

t  

a
c  

l  

1  

R  

t  

l
g

 

t  

o  

w  

w  

o  

d
 

b  

t  

2  

a
H
q
a
a

 

s
w
p
T
o
o
b

 

w  

d  

t
d  

a  

v  

t  

v  

e
 

d
l  

i  

b
o  

i  

t
t

 

fi  

i  

fi  

T  

p  

R  

t  

c  

t

n
S  

i  

J  

a  

t  

t  

o
c  

p
 

v
r
A  

p
t  

t
S

 

m  

a  

a
i  

v  

v  

l

2

2

A  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/4/5084/6678008 by Lebedev Institute of Physics R
AS user on 23 January 2024
nd the dipole magnetic field stricture, when 

 c = 

4 

3 

r 

θm 

, (4) 

 r and θm are the polar coordinates relative to the magnetic axis, r
s the distance from the star centre), one can obtain for ‘the death
ine’ (Ruderman & Sutherland 1975 ) 

˙
 −15 = βd P 

11 / 4 , (5) 

here Ṗ −15 = 10 15 Ṗ and βRS 
b ∼ 1. 

It is clear that in the mid-70s such accuracy was quite acceptable,
specially since expression ( 5 ) really limited from below most of
he pulsars in the P –Ṗ diagram. Ho we ver, as was already noted,
t present this issue requires substantial revision. Indeed, as one 
an see form Fig. 1 , there are many radio pulsars below ‘the death
ine’ drawn for characteristic values, i.e. for neutron star radius R =
0 km and magnetic field B 0 = 10 12 G ( βd = 4 according to Chen &
uderman 1993 ). As can be seen from Table 1 , the deri v ati ve of

he period for some pulsars turns out to be 1–2 orders of magnitude
ess than that of the classical Ruderman–Sutherland death line, i.e. 
ives: βd = (0.01–0 . 1) βRS 

d . 
On the other hand, it is important that their number decreases with

he distance from it. In total, there are 110 pulsars with βd < 0.1, and
nly 21 pulsar with βd < 0.02. This implies that in reality we deal
ith ‘the death valley’ corresponding to the tail of the distribution
ith respect to some parameters. Therefore, one of the main tasks
f our consideration is the question of which parameter leads to a
ecrease in the observed deceleration rate Ṗ . 
The idea of ‘the death valley’ is not new. It was first discussed

y Chen & Ruderman ( 1993 ), who introduced this term, and then
his issue was discussed in many other works (see e.g. Zhang et al.
000 ; Gonthier et al. 2002 ; Kou & Tong 2015 ). In particular, the
uthors discussed a possible role of a non-dipole magnetic field. 
o we ver, none of these works, based on qualitative estimates, studied 
uantitatively the question of the real 3D structure of the particle 
cceleration region, not to say about the spread of such parameters 
s the masses and moments of inertia of neutron stars. 

To clarify this issue, in Paper I (Beskin & Litvinov 2022 ), we
et ourselves a task to reconsider all the basic approximations 
hich are usually used in constructing of the model the secondary 
lasma generation, but which may work poorly near ‘the death line’. 
hese refinements concerned the electric potential, the influence 
f the emission spectrum of primary particles, and the effects 
f general relativity. Such a detailed study has never been done 
efore. 
As a result, the conditions for the cascade generation of particles
ere formulated, which we will consider here as a condition which
etermines ‘the death line’ on the P –Ṗ diagram. Let us emphasize
hat as both relativistic corrections and the connection between the 
eceleration rate Ṗ and the magnetic field depend on the radius R
nd moment of inertia I r , we, in fact, deal with a rather wide ‘death
alley’, i.e. with a sufficiently wide area whose width depends on
he spread of these values. Determining the real width of ‘the death
alley’, as well as explaining the existence of radio pulsars with
xtremely low deceleration rates is the main goal of this work. 

We emphasize once again that the main goal of this work was to
emonstrate that the original Ruderman–Sutherland idea of the death 
ine (dipole magnetic field, vacuum gap) leading to dependence ( 5 )
s in good agreement with observations. In other words, we show
elow that the agreement is achieved even within the framework 
f the power dependence Ṗ ∝ P 

11 / 4 , since the simultaneous taking
nto account all the effects mentioned abo v e reduces significantly
he coefficient βb . Thus, comparison with other models is beyond 
he scope of this article. 

For this reason, in this paper we consider only a dipole magnetic
eld, despite a large number of works which indicated that it

s impossible to explain ‘the death line’ in a dipole magnetic
eld (Arons 1993 ; Asseo & Khechinashvili 2002 ; Barsukov &
sygan 2010 ; Igoshev, Elfritz & Popov 2016 ; Bilous et al. 2019 ). In
articular, we do not discuss the model with a fixed curvature radius
 c = R , also considered by Chen & Ruderman ( 1993 ). By the way,

aking into account the effects discussed in Paper I this boundary (it
orresponds to dependence Ṗ ∝ P 

2 ) should be located well below
he observed pulsars. 

As an additional argument, we can cite a sufficiently large 
umber of pulsars with drifting subpulses (Weltevrede, Edwards & 

tappers 2006 ; Weltevrede, Stappers & Edwards 2007 ), for which,
n the framework of the carousel model (van Leeuwen et al. 2003 ;
anssen & van Leeuwen 2004 ; Mitra & Rankin 2008 ), a regular
xisymmetric magnetic field is required. Moreo v er, it is precisely in
he region of plasma generation, since it is this region that determines
he drift velocity. Such a configuration is hardly possible for a random
rientation of the nondipole component. Of course, individual pulsars 
an have a significant non-dipole magnetic field (for example, as a
ulsar PSR J0030 + 0451, see Riley et al. 2019 for more detail). 
Finally, another important argument is that the original idea of a

acuum gap, which underlies the Ruderman–Sutherland model, has 
ecently been unexpectedly confirmed. As shown by Timokhin & 

rons ( 2013 ), due to the strong non-stationarity of the process of
article production, a vacuum region actually appears from time 
o time. In this case, the heights of the vacuum gap determining
he particle creation rate practically coincides with the Ruderman–
utherland estimate ( 1 ). 
The paper is organized as follows. In Section 2 , we present a sum-
ary of the main results obtained in Paper I. They refer to all possible

mendments which have not yet been taken into account together. In
ddition, the parameters of two evolutionary scenarios are formulated 
n what follows. Further, in Section 3 , the real boundaries of ‘the death
alley’ are determined, which are in good agreement with the obser-
ations. Then, after discussing the nature of the knee in ‘the death
ine’ in Section 4 , a discussion of the results is given in Section 5 . 

 BA SIC  E QUAT I O N S  

.1 Paper I – general results 

t first, in Paper I, we assumed that due to time irregularity of the
econdary plasma production (T imokhin 2010 ; T imokhin & Arons
MNRAS 516, 5084–5091 (2022) 
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Table 1. Pulsars deep below ‘the death line’ ( βd < 0.02) taken from the ATNF catalogue (Manchester et al. 2005 ). See the text for 
more detail. 

PSR P Ṗ −15 B 

ATNF 
12 B 

MHD 
12 B 

BGI 
12 � K ξ βd 

(s) ( χ = 60 ◦) ( χ = 60 ◦) 

J0250 + 5854 23.53 27.16 25.66 25.88 42.80 39 1.5 × 10 5 7.1 0.003 
J0343 − 3000 2.60 0.06 0.39 0.39 0.65 37 1.1 × 10 6 8.6 0.004 
J0418 + 5732 9.01 4.10 6.17 6.22 10.29 35 7.3 × 10 4 6.6 0.010 
J0457 − 6337 2.50 0.21 0.74 0.74 1.23 33 1.3 × 10 5 7.1 0.017 
J0656 − 2228 1.23 0.03 0.18 0.19 0.31 33 3.5 × 10 5 7.8 0.015 
J0901 − 4046 75.89 215. 128 129 214 42 1.2 × 10 5 7.9 0.001 
J0919 − 6040 1.22 0.01 0.11 0.11 0.19 36 1.5 × 10 6 8.9 0.006 
J1210 − 6550 4.24 0.43 1.37 1.38 2.29 35 2.2 × 10 5 7.3 0.008 
J1232 − 4742 1.87 0.01 0.16 0.17 0.27 39 3.3 × 10 6 9.4 0.003 
J1320 − 3512 0.46 0.002 0.03 0.03 0.05 32 9.0 × 10 5 8.4 0.017 
J1333 − 4449 0.46 0.0005 0.01 0.01 0.02 34 3.2 × 10 6 9.4 0.009 
J1503 + 2111 3.32 0.14 0.69 0.71 1.15 37 5.8 × 10 5 8.1 0.005 
J1638 − 4344 1.12 0.02 0.17 0.17 0.28 32 2.9 × 10 5 7.6 0.018 
J1801 − 1855 2.55 0.18 0.69 0.69 1.15 33 1.8 × 10 5 7.3 0.014 
J1805 − 2447 0.66 0.006 0.06 0.06 0.11 32 5.1 × 10 5 8.0 0.019 
J1859 + 7654 1.39 0.05 0.27 0.27 0.45 32 2.0 × 10 5 7.4 0.020 
J1915 + 0752 2.06 0.14 0.55 0.55 0.91 32 1.4 × 10 5 7.1 0.019 
J1954 + 2923 0.43 0.0002 0.01 0.01 0.02 39 2.3 × 10 7 11.0 0.002 
J2136 − 1606 1.23 0.16 0.14 0.14 0.24 34 7.6 × 10 5 6.6 0.009 
J2144 − 3933 8.51 0.50 2.09 2.10 3.48 41 1.5 × 10 6 8.9 0.001 
J2251 − 3711 12.12 13.10 12.74 12.85 21.25 34 3.1 × 10 4 6.0 0.014 
J2310 + 6706 1.94 0.08 0.39 0.39 0.65 34 2.9 × 10 5 7.4 0.012 
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013 ; Timokhin & Harding 2015 ; Philippov, Timokhin & Spitkovsky
020 ), almost the entire region of open field lines can be considered
n a vacuum approximation: ρe = 0. Using this approximation, we
onstructed an exact 3D solution for longitudinal electric field E � in
he polar regions of a neutron star 

E ‖ = −1 

2 

�B 0 R 0 

c 
cos χ ×

∑ 

i 

c 
(0) 
i λ

(0) 
i 

( r 

R 

)−λ
(0) 
i 

/θ0 −1 
J 0 

(
λ

(0) 
i θ/θ0 

)

−1 

4 

�B 0 R 0 

c 

R 0 

R 

sin ϕ sin χ ×
∑ 

i 

c 
(1) 
i λ

(1) 
i 

( r 

R 

)−λ
(1) 
i 

/θ0 −1 
J 1 

(
λ

(1) 
i θ/θ0 

)

− 3 

16 

(
f 

f ∗

)1 / 2 (
1 − f 

f ∗

)
�B 0 R 

3 
0 

cR 

2 

(
l 

R 

)−1 / 2 

sin ϕ sin χ. (6) 

ere, R is the star radius, B 0 is the magnetic field at the star magnetic
ole, 

 0 = f 1 / 2 ∗

(
�R 

c 

)1 / 2 

(7) 

s the polar cap radius, f ∗ ≈ 1 is the standard dimensionless polar
ap area, and l is the distance along the magnetic field line f = const.
inally, λ(0 , 1) 

i are the zeros of the Bessel functions J 0, 1 ( x ), and the
xpansion coefficients c (0 , 1) 

i satisfy the conditions 

∑ 

c 
(0) 
i J 0 

(
λ

(0) 
i x 

)
= 1 − x 2 (8) ∑ 

c 
(1) 
i J 1 

(
λ

(1) 
i x 

)
= x − x 3 . (9) 

ccordingly, the potential drop ψ( r m , ϕ m ) o v er the polar cap with
he polar coordinates r m , ϕ m on the scale l ∼ R 0 can be written
NRAS 516, 5084–5091 (2022) 
own as 

( r m 

, ϕ m 

) = 

1 

2 

�B 0 R 

2 
0 

c 

(
1 − r 2 m 

R 

2 
0 

)
cos χ (10) 

+ 

3 

8 

�B 0 R 

2 
0 

c 

r m 

R 

(
1 − r 2 m 

R 

2 
0 

)
sin ϕ m 

sin χ. 

no wing no w the longitudinal electric field E � ( 6 ), we can determine
he production rate of secondary particles at sufficiently large periods
 . 
Note that as one can see from ( 6 ), in real dipole geometry, for

on-zero inclination angles χ , the longitudinal electric field does
ot vanish on the scale l ∼ R 0 , which was previously assumed
y Muslimov & Tsygan ( 1992 ). It decreases much more slowly,
s ∝ ( l / R ) −1/2 . This ef fect, ho we ver, is significant only for almost
rthogonal rotators due to the additional factor R 0 / R . 
Next, the corrections related to the effects of general relativity

ere taken into account. First of all, as is well known (Beskin 1990 ;
uslimov & Tsygan 1992 ; Philippov et al. 2015 , 2020 ), the effects

f general relativity increase the electric potential (and, hence, the
article energy) as ψ GR = K ψ ψ , where 

 ψ = 

(
1 − ω 

�

)(
1 − r g 

R 

)−1 
. (11) 

ere, r g = 2 GM / c 2 is the gravitational radius, and 

ω 

�
= 

I r r g 

MR 

3 
, (12) 

here ω is the Lense–Thirring angular velocity ( M and I r are the
eutron star mass and moment of inertia, respecti vely). Ho we ver, to
etermine all the characteristics of particle production, we also need
he corrections to the curvature radius of the magnetic field line R c 

s well as to the polar cap radius R 0 : R c, GR = K cur R c and R 0, GR =
 cap R 0 . As was shown in Paper I, they look like 

 cur = 1 − 1 

2 

r g 

R 

, (13) 
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 cap = 1 − 3 

8 

r g 

R 

. (14) 

inally, the magnetic field on the star surface B 0 , due to a well-
nown correction to the magnetic flux (Ginzburg 1964 ), increases as
 0, GR = K B B 0 , where 

 B = 1 + 

3 

4 

r g 

R 

. (15) 

ote that such an increase in the magnetic field takes place if we fix
ts asymptotic behaviour at large distances from the neutron star. As
ill be shown below, it is precisely this case that is of interest. 
Further, it was shown that the secondary particles generated at the 

mallest distance from the place of γ -quanta radiation, correspond to 
he γ -quantum energy, which significantly exceeds the characteristic 
nergy of the curvature radiation � ω c , where 

 c = 

3 

2 

c 

R c 
γ 3 

e . (16) 

enoting this energy as ξ� ω c , it was shown that the values of ξ are
o be determined from the relation 

5 / 2 e ξ
(

1 − 55 

72 

1 

ξ
+ . . . 

)
= K, (17) 

here 

 = 

4 
√ 

2 

3 
√ 

3 π� 

B cr 

B 

R c 

a B 
γ −2 

e ≈ 40 R c , 7 B 

−1 
12 γ

−2 
7 . (18) 

ere, B cr = m 

2 
e c 

3 /e� ≈ 4 . 4 × 10 13 G is the critical magnetic field,
 B = � 

2 / m e e 2 = 5.3 × 10 −9 cm is the Bohr radius, and � = 15–20
s the logarithmic factor: � ≈ � 0 − 3ln � 0 , where 

 0 = ln 

[ 

e 2 

� c 

ω B R c 

c 

(
B cr 

B 

)2 (
m e c 

2 

E ph 

)2 
] 

. (19) 

ccordingly, R c, 7 = R c /(10 7 cm), where R c is the curvature radius of
he magnetic field lines, and γ 7 = γ e /10 7 . 

The corresponding values of ξ are also given in Table 1 . In this
ase, the Lorentz-factor of primary particles was determined as γ e = 

 ψ / m e c 2 , where ψ was taken by the relation ( 10 ) for r m 

= 0 . 7 R 0 .
ccordingly, the curvature radius 

 c = 

4 

3 

R 

2 

r m 

(20) 

 as tak en for the same distance r m . As we see, the values of ξ for
he pulsars near ‘the death line’ turned out to be large enough. Thus,
aking this correction into account is also important for the pulsars
ocated in ‘the death valley’ region. 

Let us finally formulate the condition for the existence of the 
ascade production of particles, which we will consider as the 
ondition which determines the position of ‘the death valley’. First 
f all, note that the beginning of the cascade (and, hence, the filling
f this region with a secondary electron–positron plasma) can be 
nitiated by the cosmic gamma background, which, as is known, 
eads to 10 5 –10 8 primary particles per second in the polar cap
egion (Shukre & Radhakrishnan 1982 ). It is clear that for the cascade 
roduction of secondary plasma in the open magnetic field lines 
egion, it is necessary not only to produce particles by γ -quanta 
ropagating from the pulsar surface (this process can take place up 
o heights of H ∼ R , i.e. on the scale of the diminishing of the dipole
agnetic field). It is necessary that the secondary particles return to 

he region of a strong longitudinal electric field, accelerate, emit hard 
-quanta, which would have time to give birth to secondary particles 
bo v e the surface of the neutron star. 
As for the return of secondary particles to the pulsar surface from
he region H ∼ R , then, as noted previously, it can be easily explained
y the slowly decreasing longitudinal field mentioned abo v e. On the
ther hand, a particle moving toward the neutron star surface will be
ble to acquire the required energy only at a height of H ∼ R cap ∼
.01 R . Accordingly, the free path-length of a γ - quantum should be
f the same order. Therefore, it is the condition for the production of
econdary particles abo v e the v ery surface of the pulsar that should
e considered as the condition for the existence of a cascade. 
According to the results in Paper I, the condition for the existence

f a cascade can be written as P < P max , where 

 max = 0 . 7 ξ 2 / 15 K 

2 / 5 
ψ 

K 

4 / 15 
cur 

f 
3 / 5 
1 . 6 � 

2 / 15 
15 R 

19 / 15 
12 B 

8 / 15 
12 x 

4 / 15 
0 P 

2 / 5 s . (21) 

ere, f 1.6 = f ∗/1.6, � 15 = � /15, R 12 = R/ (12 km ), and I 100 =
 r / (100 M 	km 

2 ). The choice of such a normalization for the moment
f inertia I r is due to the fact that we will further use the results
btained by Greif et al. ( 2020 ), in which I r is presented just in this
orm. Finally, the last two parameters in ( 21 ), x 0 = r m / R 0 and 

( r m 

, ϕ m 

) = 

(
cos χ + 

3 

4 
x 0 

R 0 

R 

sin χ cos ϕ m 

)(
1 − x 2 0 

)
, (22) 

etermine the dependence of the ignition condition on the position 
n the polar cap. Unlike in Paper I, here we explicitly write down the
ependencies on all possible parameters. 

.2 Tw o ev olutionary scenarios 

t is clear that expression ( 21 ) is still not enough to define ‘the death
ine’ in the P –Ṗ diagram. For doing this, we need to express the

agnetic field B 0 in terms of the observed quantities. In other words,
e need to specify a braking model of radio pulsars. 
Below we consider two braking models. According to the 
ost popular model based on the results of numerical simula- 

ions (Spitko vsk y 2006 ; Kalapotharakos, Contopoulos & Kazanas 
012 ; Tchekhovsk o y, Philippov & Spitk o vsk y 2016 ), we hav e 

˙
 MHD = 

π2 

P 

B 

2 
0 R 

6 

I r c 3 

(
1 + sin 2 χ

)
. (23) 

n the other hand, according to the semi-analytical model proposed 
y Beskin, Gurevich & Istomin ( 1993 ), for the pulsars near ‘the death
ine’, we can write down 

˙
 BGI = 

π2 f 2 ∗
P 

B 

2 
0 R 

6 

I r c 3 

(
cos 2 χ + C 

)
. (24) 

ere, 

 = k 

(
R 0 

R 

)1 / 2 

= εP 

−1 / 2 (25) 

 P is in seconds), k ∼ 1, and ε belongs to the range between 0.005
nd 0.02 (No voselo v et al. 2020 ). Ho we ver, the last term in ( 24 ) plays
 role only for orthogonal pulsars, which we do not consider here. 

The corresponding magnetic fields, determined by relations ( 23 )–
 24 ), are also shown in Table 1 for the characteristic values R =
2 km, I r = 100 M 	 km 

2 and χ = 60 ◦. As one can see, for these
arameters, the magnetic fields B 

MHD practically coincide with the 
 alues gi ven in the ATNF catalogue (Manchester et al. 2005 ). On
he other hand, the magnetic fields for the BGI model turn out to be
wice as large. 

Note that since the energy losses J r ��̇ (and, therefore, the 
easured value of Ṗ ) depend on a magnetic field at large distances

rom a pulsar, the magnetic field B 0 on the neutron star surface should
MNRAS 516, 5084–5091 (2022) 
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Table 2. Tabulation of the factor K g ( 32 ). 

M (M 	) 0.5 1.0 1.5 2.0 2.5 

R = 10 km 4.91 0.68 0.24 0.11 −
R = 11 km 4.78 0.90 0.30 0.13 0.07 
R = 12 km 4.45 1.12 0.35 0.15 0.07 
R = 13 km 3.81 1.06 0.41 0.16 0.08 
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ndeed be corrected according to relation ( 15 ). As a result, due to the
ame dependence of Ṗ on P and B 0 , we again obtain in both cases
˙
 −15 = βd P 

11 / 4 ( 5 ), where now 

MHD 
d = 2 . 1 ξ−1 / 2 K GR f 

−9 / 4 
1 . 6 � 

−1 / 2 
15 R 

5 / 4 
12 I 

−1 
100 h ( x 0 ) F 

MHD , (26) 

BGI 
d = 0 . 8 ξ−1 / 2 K GR f 

−17 / 4 
1 . 6 � 

−1 / 2 
15 R 

5 / 4 
12 I 

−1 
100 h ( x 0 ) F 

BGI . (27) 

ere, the coefficient 

 GR = 

K cur 

K 

2 
B K 

3 / 2 
ψ 

, (28) 

escribes the general relativity correction. Since K GR < 1, this
oefficient, together with the parameter ξ > 1, decreases the value
f Ṗ . Finally, the functions F ( x 0 , χ ), where 

 

MHD ( χ ) = 

(1 + sin 2 χ ) 

( cos χ + 3 / 4 x 0 ( R 0 /R) sin χ cos ϕ m 

) 3 / 2 
, (29) 

 

BGI ( χ ) = 

cos 2 χ + k ( R 0 /R ) 

[ cos χ + 3 / 4 x 0 ( R 0 /R) sin χ cos ϕ m 

] 3 / 2 
(30) 

nd 

 ( x 0 ) = x −1 
0 

(
1 − x 2 0 

)−3 / 2 
, (31) 

escribe the dependence on the distance from the magnetic axis x 0 =
 m / R 0 and on the inclination angle χ . 

 ‘ T H E  D E ATH  VA LLEY’  

t the beginning, let us discuss qualitatively whether an accurate
llowance for all the possible corrections reduce the value of βd 

nough to explain the entire width of ‘the death valley’. First, as we
ee, numerical coefficients in expressions ( 26 ) and ( 27 ) turn out to
e less than the initial rough estimate βd = 4 obtained by Cheng &
uderman ( 1979 ), especially for the BGI model. This is due to the

act that we used the exact value of the potential drop ψ , moreo v er,
n the case when the plasma in the region of the open field lines is
ompletely absent. 

Next, according to Table 1 , the photon energy correction ξ reaches
alues of 7–10, so that for the pulsars located within ‘the death
alley’, the correction factor ξ−1/2 turns out to be of the order of
.3. Further, the general relativistic correction K GR ( 28 ) for the
haracteristic values ( M = 1 . 4 M 	, R = 12 km, and I r = 100 M 	
m 

2 ) gives K GR ≈ 0.3. Below, we discuss this issue in more detail,
aking into account all the terms, including R and I r . But already here
ne can conclude that the last tw o f actors lower the value of βd by
n order of magnitude. Thus, this preliminary analysis is enough to
onclude that the key parameter βd may be significantly less than it
s usually assumed. 

Thus, our qualitative discussion shows that the consistent inclusion
f the abo v e corrections really allows one to significantly shift down
the death line’ in the P –Ṗ diagram. Below, we further discuss this
ssue, trying to understand whether all the pulsars found in ‘the death
alley’ can be explained within the framework of our approach. 

Now we proceed to a detailed study of all the quantities included
n expressions ( 26 )–( 27 ). At first, let us discuss the question of how
he parameters of a neutron star, such as their radius R , mass M
nd moment of inertia I r , can affect the value of the parameter
b . At the same time, when analysing the possible scatter in these
uantities, we use the results obtained by Greif et al. ( 2020 ), where
he corresponding theoretical values are presented. 

Table 2 shows the values of factor K g 

 g = K GR R 

5 / 4 
12 I 

−1 
100 , (32) 
NRAS 516, 5084–5091 (2022) 
hich contains complete information about the role of these param-
ters. As one can see, for massive neutron stars ( M ≈ 2 M 	), the
eduction factor can be as small as 0.1 or even smaller. As for the tail
f this distribution, the difference between the smallest values of K g 

nd its average value (marked in bold) is only 0.2–0.3. 
Next, we note a strong dependence of βb on f ∗ for both braking
odels. As was shown by Beskin, Gurevich & Istomin ( 1983 ) and

onfirmed recently by Tchekhovsk o y et al. ( 2016 ) (see also Gralla,
upsasca & Philippov 2017 ) 

 ∗ ≈ f 0 
(
1 + 0 . 2 sin 2 χ

)
, (33) 

hen f 0 = 1.4–1.6. Therefore, for angles χ close to 90 ◦, we have
 ∗ = 1.7–2.0. As a result, for the limit value f ∗ = 2, we get a reduction
actor of 0.6 for the MHD model and 0.4 for the BGI model. But also
or a more realistic case f ∗ = 1.8, we have 0.75 for the MHD model
nd 0.6 for the BGI model. In general, as one can see, the position
f ‘the death line’ depends very much on f ∗ (i.e. on the radius of the
olar cap R 0 ). Below, we discuss this issue in greater detail. 
Further, despite the low power 1/2, some decrease in the value of

d can also be connected with the quantity � = � 0 − 3 ln � 0 , where
 0 is given by ( 19 ). As one can see from Table 1 , for most pulsars

ocated in ‘the death v alley’, the v alues of � are 35–40, while the
ormalization � = 15 in ( 26 )–( 27 ) was given for ordinary pulsars
 P = 1 s, Ṗ −15 = 2). As a result, this reduction factor turns out to be
 

−1 / 2 
15 ≈ 0 . 6. 
As for the factor h ( x 0 ), taking into account the distribution of the

otential ψ from the distance x 0 to the magnetic axis, it is easy to
heck that h ( x 0 ) ≈ 3 for 0.5 < x 0 < 0.6. Therefore, in what follows,
e put 

 ( x 0 ) ≈ 3 . 1 . (34) 

Finally, note a completely different dependence of the functions
 ( χ ) ( 29 )–( 30 ) on the angle χ (they are normalized so that F (0) =
). If in the MHD model, the function F ( χ ) increases with increasing
he angle χ (and, therefore, large angles χ do not help us explain
he small values of βb ), in the BGI model, the function F ( χ )
ecreases with increasing χ reaching a minimum at χ ∼ 90 ◦. The
orresponding values of F 

BGI are given in Table 3 for x 0 = 0.7.
nfortunately, the inaccuracy in determining the coefficient k in ( 25 )
ives a significant spread in the values of F 

BGI . Nevertheless, it can
e stated with certainty that here, too, the reducing factor can reach
he values 0.3–0.4. However, in what follows, we put 

 

BGI = 0 . 7 , (35) 

ecause this value will better fit the entire angle range χ . We
mphasize once again that the minimum values F for the BGI model
re achieved at large inclination angles χ ∼ 90 ◦, while in the MHD
odel, the smallest values of F occur at angles χ close to 0 ◦. 
Fig. 2 shows ‘the death lines’ for the models MHD (top) and

GI (bottom). The solid lines correspond to the average value of the
arameters in expressions ( 26 )–( 27 ) ( ξ = 9, � = 35, f ∗ = 1.6, K g =
.35, and F = 1), and the dashed line corresponds to their limiting
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Table 3. Minimum values of the factor F 

BGI ( 30 ) for x 0 = 0.7. The values 
in the parentheses show the appropriate inclination angles χ . 

P (s) 0.5 1 2 4 8 16 

k = 0.2 0.38 0.36 0.33 0.31 0.29 0.27 
(84 ◦) (86 ◦) (86 ◦) (87 ◦) (87 ◦) (87 ◦) 

k = 0.5 0.51 0.47 0.44 0.41 0.38 0.35 
(80 ◦) (82 ◦) (83 ◦) (84 ◦) (85 ◦) (86 ◦) 

k = 1 0.62 0.57 0.53 0.49 0.45 0.42 
(75 ◦) (80 ◦) (81 ◦) (82 ◦) (84 ◦) (84 ◦) 

k = 2 0.75 0.69 0.64 0.59 0.54 0.52 
(70 ◦) (75 ◦) (77 ◦) (80 ◦) (81 ◦) (82 ◦) 

k = 4 0.90 0.83 0.77 0.71 0.65 0.60 
(60 ◦) (65 ◦) (70 ◦) (75 ◦) (77 ◦) (80 ◦) 

Figure 2. ‘The death lines’ for models MHD (top) and BGI (bottom). The 
solid lines correspond to the average value of the parameters in the expressions 
( 26 )–( 27 ), and the dashed lines correspond to their limiting values. 
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Table 4. Slowly rotationg pulsars ( P > 3 s) located deep below ‘the death 
line’ ( βd < 0.02) taken from the ATNF catalogue (Manchester et al. 2005 ). 
Theoretical values βd correspond to the limiting parameters discussed in the 
text. 

PSR P Ṗ −15 βd β
( MHD ) 
d β

( BGI ) 
d 

(s) 

J0250 + 5854 23.53 27.16 0.003 0.013 0.002 
J0418 + 5732 9.01 4.10 0.010 0.018 0.003 
J1210 − 6550 4.24 0.43 0.008 0.017 0.003 
J0901 − 4046 75.89 215. 0.001 0.013 0.001 
J1503 + 2111 3.32 0.14 0.005 0.016 0.003 
J2144 − 3933 8.51 0.50 0.001 0.014 0.002 
J2251 − 3711 12.12 13.10 0.014 0.016 0.003 

Figure 3. Lorentz factor γ ( h ) of back-moving primary particles depending 
on the distance h from the star surface for three different periods P = 0.003, 
P = 0.03, and P = 0.3 s. The dashed line corresponds to the absence of the 
radiation reaction force associated with the curvature radiation. 
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alues ( ξ = 11, � = 41, f ∗ = 1.9, K g = 0.07, and F 

BGI = 0.7). A
mall break at small periods is associated with the dependence of R 0 

n P . As we see, in general, both models quite well reproduce the
ower boundary of ‘the death valley’. 

Of course, long-period pulsars ( P > 3 s) are of special interest,
specially recently disco v ered pulsar J0901 − 4046 ( P ≈ 46 s, Caleb
t al. 2022 ). In particular, the question arises whether the slope of
the death line’ can be approximated by the dependence Ṗ = βd P 

11 / 4 

onsidered here. In our opinion, the number of pulsars with periods 
 > 3 s located near the lower boundary of ‘the death valley’ is

nsufficient to speak of a change in its shape. On the other hand, it is
seful to consider these pulsars in more detail. 
Table 4 lists the data for six long-period pulsars. Theoretical values 

( MHD ) 
d and β ( BGI ) 

d for two models of evolution correspond to the 
imiting parameters discussed abo v e. As we see, limiting BGI model
 F 

BGI = 0.27 corresponding to almost orthogonal rotators) does not
ontradict the observational data. As for the difference for MHD 

odel, we discuss this issue in Section 5 . 

 ‘ T H E  D E ATH  LI NE’  K N E E  

efore proceeding to the analysis of the obtained results, let us
iscuss qualitatively one more property of ‘the death line’. At the time 
f this writing, 3282 pulsars were already disco v ered (Manchester
t al. 2005 ). This rather rich statistics clearly shows that the line
imiting from below the population of pulsars on the P –Ṗ diagram
as a break at P ≈ 0.3 s (see Fig. 1 ). Here, we show that this break
an be easily explained. 

Indeed, as was shown in Paper I (see also Jones 2022 ), for the
ulsars with small enough periods (at any way, with periods P <

.1 s), the radiation reaction becomes significant, so the energy of
rimary particles does not reach the values dictated by the potential
rop ψ ( 10 ). Clearly, this also applies to the back-moving primary
articles. Fig. 3 shows the dependence of the Lorentz-factors γ ( h )
f the back-moving primary particles at the distance h from the star
urface for three different periods, P = 0.003, P = 0.03, and P =
.3 s, for the magnetic field B = 10 9 G which is characteristic of
illisecond pulsars. The dashed line corresponds to the case when 

he radiation reaction force plays no role ( γ = e ψ / m e c 2 ). 
As one can see, at P < 0.3 s, the energy of the primary particles

ecomes lower than previously assumed. Correspondingly, ‘the death 
ine’ for these pulsars should be shifted upward compared to the
ependence defined abo v e. As a result, for the e xistence of cascade
MNRAS 516, 5084–5091 (2022) 
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M

Figure 4. ‘The death line’ knee at period P ≈ 0.3 s for the BGI model. At P 

< 0.3 s, the slope becomes noticeably flatter (it corresponds to proportionality 
Ṗ ∝ P 

2 ). 
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Table 5. Intermittent pulsars. 

PSR P (s) Ṗ −15 �̇on / ̇�off 

J1832 + 0029 0.53 1.55 1.5 
J1841 + 0500 0.91 34.7 2.5 
J2310 + 6706 0.81 8.11 1.8 
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article production, the corresponding rotation periods P must be
oticeably longer compared to the case in which the particle energy
xactly corresponds to the accelerating potential ψ . And this, in
urn, should lead to a rise in the death line in comparison with the
symptotic behaviour corresponding to the periods P > 0.3 s. 

To e v aluate this ef fect, one can use relation ( 21 ), in which the
agnetic field B should be considered as a function of P and Ṗ , and
e also need to replace P by kP where the coefficient k (defined for
iven magnetic field B( P , Ṗ ), as in Fig. 3 ) is the decrease in particle
nergy due to radiation reaction 

 = 

γ (0) 

γψ (0) 
. (36) 

ere, γ ψ (0) is the Lorentz-factor of the particles with the absence
f the energy losses. The resulting relation implicitly determines the
ependence Ṗ = Ṗ ( P ) for ‘the death line’. 
The corresponding break of ‘the death valley’ for the model

GI is shown in Fig. 4 . As one can see, at P < 0.3 s, the
lope becomes noticeably flatter (it corresponds to proportionality
˙
 ∝ P 

2 ). Herewith, such ‘the death valley’ corresponds even better
o the observations. A more detailed discussion of this issue is beyond
he scope of this work. 

 DISCUSSION  A N D  C O N C L U S I O N  

hus, it was shown that ‘the death valley’ in the P –Ṗ diagram is
ide enough to explain all the observed sources even for a dipole
agnetic field. In this case, the best agreement takes place in the
GI model. Indeed, for the limiting values of the parameters ( ξ =
1, � = 41, f ∗ = 1.9, K g = 0.07, F 

BGI = 0.7), we get βb = 0.003,
hich allows us to explain almost all the sources collected in Table 1 .
o we ver, in our opinion, it is not worth arguing that the MHD model

s inconsistent with the observational data. After all, the discrepancy
ere is only in factor 3 ( βd = 0.015 for the abo v e critical parameters,
ut with F 

MHD = 1), which can be associated with many reasons not
aken into account in this work. 

First of all, this difference can be related to a non-dipole magnetic
eld, which, as is well-known (Arons 1993 ; Asseo & Khechinashvili
002 ; Barsukov & Tsygan 2010 ; Igoshev et al. 2016 ), leads to a
ecrease in the curvature radius of the magnetic field lines R c . As can
e seen from relations ( 32 ) and ( 26 )–( 27 ), the corresponding factor
 cur enters linearly into the expression for βd . Hence, a decrease

n the curvature radius R c by only a few times makes it possible to
 xplain man y sources located in the lower part of ‘the death valley’.
NRAS 516, 5084–5091 (2022) 
The second possibility is related to the size of the polar cap,
he dependence on which is determined by the value f ∗. A strong
ependence on this parameter makes it possible to significantly
educe the value of βd by a factor of three at a value of f ∗ = 3,
hich corresponds to an increase in the radius of the polar cap R 0 

nly by 20 per cent compared to the value f ∗ = 1.9 used abo v e.
ecause we are unlikely to know the value of f ∗ with such accuracy,

ncreasing the value of this parameter can also lower the parameter
d in the MHD model. 
There may be other reasons leading to a decrease in the value

f Ṗ . In Table 5 , we collect three intermittent pulsars for which the
eceleration rates both in on and off regime are known (see Beskin &
okhrina 2007 ; Gurevich & Istomin 2007 for more detail; more
umerous pulsars with short nullings make it impossible to determine
his ratio). As one can see, in the off state, the deceleration rate of the
ulsar can be 1.5–2.5 times less than in the on state. Accordingly, the
ong-time averaged deceleration rate Ṗ may be less than we assume.

Summing up, it was shown that ‘the death valley’ in the P –Ṗ 

iagram is wide enough to explain all the observed sources even
or a dipole magnetic field. In this case, the best agreement takes
lace in the BGI model, although MHD model, taking into account
uite reasonable additional assumptions, also does not contradict the
bservations. This once again pro v es that from the very beginning
i.e. from the works of Sturrock 1971 ; Ruderman & Sutherland 1975 )
e correctly understood the nature of the activity of radio pulsars. 
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